cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 1638 results. Next

A000701 One half of number of non-self-conjugate partitions; also half of number of asymmetric Ferrers graphs with n nodes.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 37, 49, 66, 86, 113, 146, 190, 242, 310, 392, 497, 623, 782, 973, 1212, 1498, 1851, 2274, 2793, 3411, 4163, 5059, 6142, 7427, 8972, 10801, 12989, 15572, 18646, 22267, 26561, 31602, 37556, 44533, 52743, 62338, 73593
Offset: 0

Views

Author

Keywords

Comments

Also number of cycle types of odd permutations.
Also number of partitions of n with an odd number of even parts. There is no restriction on the odd parts. - N. Sato, Jul 20 2005. E.g., a(6)=5 because we have [6],[4,1,1],[3,2,1],[2,2,2] and [2,1,1,1,1]. - Emeric Deutsch, Mar 02 2006
Also number of partitions of n with largest part not congruent to n modulo 2: a(2*n)=A027193(2*n), a(2*n+1)=A027187(2*n+1); a(n)=A000041(n)-A046682(n). - Reinhard Zumkeller, Apr 22 2006
From Gus Wiseman, Mar 31 2022: (Start)
Also the number of integer partitions of n with Heinz number greater than that of their conjugate, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). These partitions are ranked by A352490. The complement is counted by A046682. For example, the a(n) partitions for n = 2...8 are:
(11) (111) (211) (221) (222) (331) (2222)
(1111) (2111) (2211) (2221) (3221)
(11111) (3111) (3211) (3311)
(21111) (22111) (22211)
(111111) (31111) (32111)
(211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
Also the number of integer partitions of n with Heinz number less than that of their conjugate, ranked by A352487. For example, the a(n) partitions for n = 2...8 are:
(2) (3) (4) (5) (6) (7) (8)
(31) (32) (33) (43) (44)
(41) (42) (52) (53)
(51) (61) (62)
(411) (322) (71)
(421) (422)
(511) (431)
(521)
(611)
(5111)
(End)

Examples

			G.f. = x^2 + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 14*x^9 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A000700 counts self-conjugate partitions, ranked by A088902.
A330644 counts non-self-conjugate partitions, ranked by A352486.
Heinz number (rank) and partition:
- A122111 = rank of conjugate.
- A296150 = parts of partition, conjugate A321649.
- A352487 = rank less than conjugate, counted by A000701.
- A352488 = rank greater than or equal to conjugate, counted by A046682.
- A352489 = rank less than or equal to conjugate, counted by A046682.
- A352490 = rank greater than conjugate, counted by A000701.
- A352491 = rank minus conjugate.

Programs

  • Maple
    with(combinat); A000701 := n->(numbpart(n)-A000700(n))/2;
  • Mathematica
    a41 = PartitionsP; a700[n_] := SeriesCoefficient[ Product[1 + x^k, {k, 1, n, 2}], {x, 0, n}]; a[0] = 0; a[n_] := (a41[n] - a700[n])/2; Table[a[n], {n, 0, 48}] (* Jean-François Alcover, Feb 21 2012, after first formula *)
    a[ n_] := SeriesCoefficient[ (1 / QPochhammer[ x] - 1 / QPochhammer[ x, -x]) / 2, {x, 0, n}]; (* Michael Somos, Aug 25 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - EllipticTheta[ 4, 0, x^2]) / (2 QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, Aug 25 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] Sum[ x^(2 k) / QPochhammer[ x^2, x^2, k], {k, 1, n/2, 2}], {x, 0, n}] (* Michael Somos, Aug 25 2015 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (1 / QPochhammer[ x, x, k]^2 - 1 / QPochhammer[ x^2, x^2, k]) x^k^2, {k, Sqrt@n}] / 2, {x, 0, n}]]; (* Michael Somos, Aug 25 2015 *)
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],Times@@Prime/@#>Times@@Prime/@conj[#]&]],{n,0,15}] (* Gus Wiseman, Mar 31 2022 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x^2 + A)^2 / eta(x^4 + A) ) / (2 * eta(x + A)), n))}; /* Michael Somos, Aug 25 2015 */
    
  • PARI
    q='q+O('q^60); concat([0, 0], Vec((1-eta(q^2)^2/eta(q^4))/(2*eta(q)))) \\ Altug Alkan, Sep 26 2018

Formula

a(n) = (A000041(n) - A000700(n))/2.
From Bill Gosper, Aug 08 2005: (Start)
Sum a(n) q^n = q^2 + q^3 + 2 q^4 + 3 q^5 + 5 q^6 + 7 q^7 + ...
= -( Sum_{n>=1} (-q^2)^(n^2) ) / ( Sum_{ n = -oo..oo } (-1)^n q^(n(3n-1)/2) )
= (- q; q){oo} Sum{n>=1} q^(2(2n-1))/(q^2;q^2)_{2n-1}
= (1/(q;q)_oo - 1/(q;-q)_oo)/2
= (1/(q;q)_oo - (-q;q^2)_oo)/2
= Sum{k>=0} ( 1/((q;q)_k)^2 - 1/(q^2;q^2)_k ) q^(k^2)/2
using the "q-Pochhammer" notation (a;q)n := Product{k=0..n-1} (1 - a*q^k).
(End)
a(n) = p(n-2) - p(n-8) + p(n-18) - p(n-32) + ... + (-1)^(k+1)*p(n-2*k^2) + ..., where p() is A000041(). E.g., a(20) = p(18) - p(12) + p(2) = 385 - 77 + 2 = 310. - Vladeta Jovovic, Aug 08 2004
G.f.: (1/2)*(1 - Product_{j>=1} (1-x^(2j))/(1+x^(2j)))/Product_{j>=1} (1 - x^j). - Emeric Deutsch, Mar 02 2006
a(2*n) = A236559(n). a(2*n + 1) = A236914(n). - Michael Somos, Aug 25 2015
a(n) = A330644(n)/2. - Omar E. Pol, Jan 10 2020
a(n) = A000041(n) - A046682(n) = A046682(n) - A000700(n). - Gus Wiseman, Mar 31 2022

Extensions

Better description and more terms from Christian G. Bower, Apr 27 2000

A064428 Number of partitions of n with nonnegative crank.

Original entry on oeis.org

1, 0, 1, 2, 3, 4, 6, 8, 12, 16, 23, 30, 42, 54, 73, 94, 124, 158, 206, 260, 334, 420, 532, 664, 835, 1034, 1288, 1588, 1962, 2404, 2953, 3598, 4392, 5328, 6466, 7808, 9432, 11338, 13632, 16326, 19544, 23316, 27806, 33054, 39273, 46534, 55096, 65076, 76808
Offset: 0

Views

Author

Vladeta Jovovic, Sep 30 2001

Keywords

Comments

For a partition p, let l(p) = largest part of p, w(p) = number of 1's in p, m(p) = number of parts of p larger than w(p). The crank of p is given by l(p) if w(p) = 0, otherwise m(p)-w(p).
From Gus Wiseman, Mar 30 2021 and May 21 2022: (Start)
Also the number of even-length compositions of n with alternating parts strictly decreasing, or properly 2-colored partitions (proper = no equal parts of the same color) with the same number of parts of each color, or ordered pairs of strict partitions of the same length with total n. The odd-length case is A001522, and there are a total of A000041 compositions with alternating parts strictly decreasing (see A342528 for a bijective proof). The a(2) = 1 through a(7) = 8 ordered pairs of strict partitions of the same length are:
(1)(1) (1)(2) (1)(3) (1)(4) (1)(5) (1)(6)
(2)(1) (2)(2) (2)(3) (2)(4) (2)(5)
(3)(1) (3)(2) (3)(3) (3)(4)
(4)(1) (4)(2) (4)(3)
(5)(1) (5)(2)
(21)(21) (6)(1)
(21)(31)
(31)(21)
Conjecture: Also the number of integer partitions y of n without a fixed point y(i) = i, ranked by A352826. This is stated at A238394, but Resta tells me he may not have had a proof. The a(2) = 1 through a(7) = 8 partitions without a fixed point are:
(2) (3) (4) (5) (6) (7)
(21) (31) (41) (33) (43)
(211) (311) (51) (61)
(2111) (411) (331)
(3111) (511)
(21111) (4111)
(31111)
(211111)
The version for permutations is A000166, complement A002467.
The version for compositions is A238351.
This is column k = 0 of A352833.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238394 counts reversed partitions without a fixed point, ranked by A352830.
A238395 counts reversed partitions with a fixed point, ranked by A352872. (End)
The above conjecture is true. See Section 4 of the Blecher-Knopfmacher paper in the Links section. - Jeremy Lovejoy, Sep 26 2022

Examples

			G.f. = 1 + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 12*x^8 + 16*x^9 + 23*x^10 + ... - _Michael Somos_, Jan 15 2018
From _Gus Wiseman_, May 21 2022: (Start)
The a(0) = 1 through a(8) = 12 partitions with nonnegative crank:
  ()  .  (2)  (3)   (4)   (5)    (6)    (7)     (8)
              (21)  (22)  (32)   (33)   (43)    (44)
                    (31)  (41)   (42)   (52)    (53)
                          (221)  (51)   (61)    (62)
                                 (222)  (322)   (71)
                                 (321)  (331)   (332)
                                        (421)   (422)
                                        (2221)  (431)
                                                (521)
                                                (2222)
                                                (3221)
                                                (3311)
(End)
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 18 Entry 9 Corollary (i).
  • G. E. Andrews, B. C. Berndt, Ramanujan's Lost Notebook Part I, Springer, see p. 169 Entry 6.7.1.

Crossrefs

These are the row-sums of the right (or left) half of A064391, inclusive.
The case of crank 0 is A064410, ranked by A342192.
The strict case is A352828.
These partitions are ranked by A352873.
A000700 = self-conjugate partitions, ranked by A088902, complement A330644.
A001522 counts partitions with positive crank, ranked by A352874.
A034008 counts even-length compositions.
A115720 and A115994 count partitions by their Durfee square.
A224958 counts compositions w/ alternating parts unequal (even: A342532).
A257989 gives the crank of the partition with Heinz number n.
A342527 counts compositions w/ alternating parts equal (even: A065608).
A342528 = compositions w/ alternating parts weakly decr. (even: A114921).

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-1)^k x^(k (k + 1)/2) , {k, 0, (Sqrt[1 + 8 n] - 1)/2}] / QPochhammer[ x], {x, 0, n}]]; (* Michael Somos, Jan 15 2018 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[  x^(k (k + 1)) / QPochhammer[ x, x, k]^2 , {k, 0, (Sqrt[1 + 4 n] - 1)/2}], {x, 0, n}]]; (* Michael Somos, Jan 15 2018 *)
    ck[y_]:=With[{w=Count[y,1]},If[w==0,If[y=={},0,Max@@y],Count[y,?(#>w&)]-w]];Table[Length[Select[IntegerPartitions[n],ck[#]>=0&]],{n,0,30}] (* _Gus Wiseman, Mar 30 2021 *)
    ici[q_]:=And@@Table[q[[i]]>q[[i+2]],{i,Length[q]-2}];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n], EvenQ@*Length],ici]],{n,0,15}] (* Gus Wiseman, Mar 30 2021 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(1 + 8*n) -1)\2, (-1)^k * x^((k+k^2)/2)) / eta( x + x * O(x^n)), n))}; /* Michael Somos, Jul 28 2003 */

Formula

a(n) = (A000041(n) + A064410(n)) / 2, n>1. - Michael Somos, Jul 28 2003
G.f.: (Sum_{k>=0} (-1)^k * x^(k(k+1)/2)) / (Product_{k>0} 1-x^k). - Michael Somos, Jul 28 2003
G.f.: Sum_{i>=0} x^(i*(i+1)) / (Product_{j=1..i} 1-x^j )^2. - Jon Perry, Jul 18 2004
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Sep 26 2016
G.f.: (Sum_{i>=0} x^i / (Product_{j=1..i} 1-x^j)^2 ) * (Product_{k>0} 1-x^k). - Li Han, May 23 2020
a(n) = A000041(n) - A001522(n). - Gus Wiseman, Mar 30 2021
a(n) = A064410(n) + A001522(n). - Gus Wiseman, May 21 2022

A087897 Number of partitions of n into odd parts greater than 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 10, 12, 13, 15, 18, 20, 23, 27, 30, 34, 40, 44, 50, 58, 64, 73, 83, 92, 104, 118, 131, 147, 166, 184, 206, 232, 256, 286, 320, 354, 394, 439, 485, 538, 598, 660, 730, 809, 891, 984, 1088, 1196, 1318, 1454, 1596, 1756
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2003

Keywords

Comments

Also number of partitions of n into distinct parts which are not powers of 2.
Also number of partitions of n into distinct parts such that the two largest parts differ by 1.
Also number of partitions of n such that the largest part occurs an odd number of times that is at least 3 and every other part occurs an even number of times. Example: a(10) = 2 because we have [2,2,2,1,1,1,1] and [2,2,2,2,2]. - Emeric Deutsch, Mar 30 2006
Also difference between number of partitions of 1+n into distinct parts and number of partitions of n into distinct parts. - Philippe LALLOUET, May 08 2007
In the Berndt reference replace {a -> -x, q -> x} in equation (3.1) to get f(x). G.f. is 1 - x * (1 - f(x)).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also number of symmetric unimodal compositions of n+3 where the maximal part appears three times. - Joerg Arndt, Jun 11 2013
Let c(n) = number of palindromic partitions of n whose greatest part has multiplicity 3; then c(n) = a(n-3) for n>=3. - Clark Kimberling, Mar 05 2014
From Gus Wiseman, Aug 22 2021: (Start)
Also the number of integer partitions of n - 1 whose parts cover an interval of positive integers starting with 2. These partitions are ranked by A339886. For example, the a(6) = 1 through a(16) = 5 partitions are:
32 222 322 332 432 3322 3332 4332 4432 5432 43332
2222 3222 22222 4322 33222 33322 33332 44322
32222 222222 43222 43322 333222
322222 332222 432222
2222222 3222222
(End)

Examples

			1 + x^3 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + 3*x^13 + ...
q + q^73 + q^121 + q^145 + q^169 + q^193 + 2*q^217 + 2*q^241 + 2*q^265 + ...
a(10)=2 because we have [7,3] and [5,5].
From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(22)=13 symmetric unimodal compositions of 22+3=25 where the maximal part appears three times:
01:  [ 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 1 2 3 3 3 2 1 1 1 1 1 1 ]
03:  [ 1 1 1 1 1 5 5 5 1 1 1 1 1 ]
04:  [ 1 1 1 1 2 2 3 3 3 2 2 1 1 1 1 ]
05:  [ 1 1 1 2 5 5 5 2 1 1 1 ]
06:  [ 1 1 2 2 2 3 3 3 2 2 2 1 1 ]
07:  [ 1 1 3 5 5 5 3 1 1 ]
08:  [ 1 1 7 7 7 1 1 ]
09:  [ 1 2 2 5 5 5 2 2 1 ]
10:  [ 1 4 5 5 5 4 1 ]
11:  [ 2 2 2 2 3 3 3 2 2 2 2 ]
12:  [ 2 3 5 5 5 3 2 ]
13:  [ 2 7 7 7 2 ]
(End)
From _Gus Wiseman_, Feb 16 2021: (Start)
The a(7) = 1 through a(19) = 8 partitions are the following (A..J = 10..19). The Heinz numbers of these partitions are given by A341449.
  7  53  9    55  B    75    D    77    F      97    H      99      J
         333  73  533  93    553  95    555    B5    755    B7      775
                       3333  733  B3    753    D3    773    D5      955
                                  5333  933    5533  953    F3      973
                                        33333  7333  B33    5553    B53
                                                     53333  7533    D33
                                                            9333    55333
                                                            333333  73333
(End)
		

References

  • J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), pp. 111-112. see Eq. I

Crossrefs

The ordered version is A000931.
Partitions with no ones are counted by A002865, ranked by A005408.
The even version is A035363, ranked by A066207.
The version for factorizations is A340101.
Partitions whose only even part is the smallest are counted by A341447.
The Heinz numbers of these partitions are given by A341449.
A000009 counts partitions into odd parts, ranked by A066208.
A025147 counts strict partitions with no 1's.
A025148 counts strict partitions with no 1's or 2's.
A026804 counts partitions whose smallest part is odd, ranked by A340932.
A027187 counts partitions with even length/maximum, ranks A028260/A244990.
A027193 counts partitions with odd length/maximum, ranks A026424/A244991.
A058695 counts partitions of odd numbers, ranked by A300063.
A058696 counts partitions of even numbers, ranked by A300061.
A340385 counts partitions with odd length and maximum, ranked by A340386.

Programs

  • Haskell
    a087897 = p [3,5..] where
       p [] _ = 0
       p _  0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 12 2011
    
  • Maple
    To get 128 terms: t4 := mul((1+x^(2^n)),n=0..7); t5 := mul((1+x^k),k=1..128): t6 := series(t5/t4,x,100); t7 := seriestolist(t6);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<3, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(n, n-1+irem(n, 2)):
    seq(a(n), n=0..80);  # Alois P. Heinz, Jun 11 2013
  • Mathematica
    max = 65; f[x_] := Product[ 1/(1 - x^(2k+1)), {k, 1, max}]; CoefficientList[ Series[f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 16 2011, after Emeric Deutsch *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<3, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]] ]; a[n_] := b[n, n-1+Mod[n, 2]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 01 2015, after Alois P. Heinz *)
    Flatten[{1, Table[PartitionsQ[n+1] - PartitionsQ[n], {n, 0, 80}]}] (* Vaclav Kotesovec, Dec 01 2015 *)
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&OddQ[Times@@#]&]],{n,0,30}] (* Gus Wiseman, Feb 16 2021 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - x) * eta(x^2 + A) / eta(x + A), n))} /* Michael Somos, Nov 13 2011 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A087897_T(n,k):
        if n==0: return 1
        if k<3 or n<0: return 0
        return A087897_T(n,k-2)+A087897_T(n-k,k)
    def A087897(n): return A087897_T(n,n-(n&1^1)) # Chai Wah Wu, Sep 23 2023, after Alois P. Heinz

Formula

Expansion of q^(-1/24) * (1 - q) * eta(q^2) / eta(q) in powers of q.
Expansion of (1 - x) / chi(-x) in powers of x where chi() is a Ramanujan theta function.
G.f.: 1 + x^3 + x^5*(1 + x) + x^7*(1 + x)*(1 + x^2) + x^9*(1 + x)*(1 + x^2)*(1 + x^3) + ... [Glaisher 1876]. - Michael Somos, Jun 20 2012
G.f.: Product_{k >= 1} 1/(1-x^(2*k+1)).
G.f.: Product_{k >= 1, k not a power of 2} (1+x^k).
G.f.: Sum_{k >= 1} x^(3*k)/Product_{j = 1..k} (1 - x^(2*j)). - Emeric Deutsch, Mar 30 2006
a(n) ~ exp(Pi*sqrt(n/3)) * Pi / (8 * 3^(3/4) * n^(5/4)) * (1 - (15*sqrt(3)/(8*Pi) + 11*Pi/(48*sqrt(3)))/sqrt(n) + (169*Pi^2/13824 + 385/384 + 315/(128*Pi^2))/n). - Vaclav Kotesovec, Aug 30 2015, extended Nov 04 2016
G.f.: 1/(1 - x^3) * Sum_{n >= 0} x^(5*n)/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 - x^3)*(1 - x^5)) * Sum_{n >= 0} x^(7*n)/Product_{k = 1..n} (1 - x^(2*k)) = ..., extending Deutsch's result dated Mar 30 2006. - Peter Bala, Jan 15 2021
G.f.: Sum_{n >= 0} x^(n*(2*n+1))/Product_{k = 2..2*n+1} (1 - x^k). (Set z = x^3 and q = x^2 in Mc Laughlin et al., Section 1.3, Entry 7.) - Peter Bala, Feb 02 2021
a(2*n+1) = Sum{j>=1} A008284(n+1-j,2*j - 1) and a(2*n) = Sum{j>=1} A008284(n-j, 2*j). - Gregory L. Simay, Sep 22 2023

A003105 Schur's 1926 partition theorem: number of partitions of n into parts 6n+1 or 6n-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 23, 26, 30, 34, 38, 42, 47, 53, 60, 67, 74, 82, 91, 102, 114, 126, 139, 153, 169, 187, 207, 228, 250, 274, 301, 331, 364, 399, 436, 476, 520, 569, 622, 679, 739, 804, 875, 953, 1038, 1128, 1224, 1327
Offset: 0

Views

Author

Keywords

Comments

There are many (at least 8) equivalent definitions of this sequence (besides the comments below, see also Schur, Alladi, Andrews). - N. J. A. Sloane, Jun 17 2011
Coefficients of replicable function number 72e. - N. J. A. Sloane, Jun 10 2015
Also number of partitions of n into odd parts in which no part appears more than twice, cf. A070048 and A096938. - Vladeta Jovovic, Jan 18 2005
Also number of partitions of n into distinct parts congruent to 1 or 2 modulo 3. (Follows from second g.f.) - N. Sato, Jul 20 2005
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution of A262928 and A261612. - Vaclav Kotesovec, Jan 13 2017
Convolution of A109702 and A109701. - Vaclav Kotesovec, Jan 21 2017

Examples

			G.f: A(x) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + ...
T72e = 1/q + q^11 + q^23 + q^35 + q^47 + 2*q^59 + 2*q^71 + 3*q^83 + ...
The logarithm of the g.f. begins:
log(A(x)) = x + x^2/2 + x^3/3 + x^4/4 + 6*x^5/5 + x^6/6 + 8*x^7/7 + x^8/8 + x^9/9 + 6*x^10/10 + 12*x^11/11 + x^12/12 + ... + A186099(n)*x^n/n + ... . - _Paul D. Hanna_, Feb 17 2013
		

References

  • K. Alladi, Refinements of Rogers-Ramanujan type identities. In Special Functions, q-Series and Related Topics (Toronto, ON, 1995), 1-35, Fields Inst. Commun., 14, Amer. Math. Soc., Providence, RI, 1997.
  • G. E. Andrews, Schur's theorem, partitions with odd parts and the Al-Salam-Carlitz polynomials. In q-Series From a Contemporary Perspective (South Hadley, MA, 1998), 45-56, Contemp. Math., 254, Amer. Math. Soc., Providence, RI, 2000.
  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • I. Schur, Zur Additiven Zahlentheorie, Ges. Abh., Vol. 2, Springer, pp. 43-50.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003105 n = p 1 n where
       p k m | m == 0 = 1 | m < k = 0 | otherwise = q k (m-k) + p (k+2) m
       q k m | m == 0 = 1 | m < k = 0 | otherwise = p (k+2) (m-k) + p (k+2) m
    -- Reinhard Zumkeller, Nov 12 2011
  • Maple
    with(combinat);
    A:=proc(n) local i, j, t3, t2, t1;
        t2:=0;
        t1:=firstpart(n);
        for j from 1 to numbpart(n)+2 do
            t3:=1;
            for i from 1 to nops(t1) do
                if (t1[i] mod 6) <> 1 and (t1[i] mod 6) <> 5 then t3:=0; fi;
            od;
            if t3=1 then t2:=t2+1; fi;
            if nops(t1) = 1 then RETURN(t2); fi;
            t1:=nextpart(t1);
        od;
    end;
    # brute-force Maple program from N. J. A. Sloane, Jun 17 2011
  • Mathematica
    max = 63; f[x_] := 1/Product[1 - x^k + x^(2k), {k, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 01 2011, after Vladeta Jovovic *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] / QPochhammer[ -x^3, x^3], {x, 0, n}]; (* Michael Somos, Jul 05 2014 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 3] != 0, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}];], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 13 2017 *)
    nmax = 63; kmax = nmax/6;
    s = Flatten[{Range[0, kmax]*6 + 1}~Join~{Range[kmax]*6 - 1}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Jul 31 2020 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)), n))}; /* Michael Somos, Jan 09 2005 */
    
  • PARI
    {S(n,x)=sumdiv(n,d,d*(1-x^d)^(n/d))}
    {a(n)=polcoeff(exp(sum(k=1,n,S(k,x)*x^k/k)+x*O(x^n)),n)}
    for(n=0,60,print1(a(n),", "))
    /* Paul D. Hanna, Feb 17 2013 */
    

Formula

G.f.: 1/Product_{k>=0} (1-x^(6*k+1))*(1-x^(6*k+5)) = Product_{k>=0} (1+x^(3*k+1))*(1+x^(3*k+2)) = 1/Product_{k>=0} (1-x^k+x^(2*k)). - Vladeta Jovovic, Jun 08 2003
Expansion of chi(-x^3) / chi(-x) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Mar 04 2012
Expansion of f(x, x^2) / f(-x^3) = f(-x^6) / f(-x, -x^5) in powers of x where f() is Ramanujan theta function. - Michael Somos, Jul 05 2014
Expansion of q^(1/12) * eta(q^2) * eta(q^3) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Jan 09 2005
Euler transform of period 6 sequence [1, 0, 0, 0, 1, 0, ...]. - Michael Somos, Jan 09 2005
Given g.f. A(x), then B(q) = (A(q^12) / q)^4 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u*v^4 + (1 - u^3) * v^3 + 6*u^2*v^2 + (u^4 - u)*v + u^3. - Michael Somos, Jan 09 2005
The logarithmic derivative equals A186099. - Paul D. Hanna, Feb 17 2013
G.f.: exp( Sum_{n>=1} A186099(n) * x^n/n ) where A186099(n) = sum of divisors of n congruent to 1 or 5 mod 6. - Paul D. Hanna, Feb 17 2013
G.f.: exp( Sum_{n>=1} S(n,x) * x^n/n ) where S(n,x) = Sum_{d|n} d*(1-x^d)^(n/d). - Paul D. Hanna, Feb 17 2013
a(n) ~ Pi*sqrt(2) / sqrt(3*(12*n-1)) * BesselI(1, Pi*sqrt(12*n-1) / (3*sqrt(6))) ~ exp(Pi*sqrt(2*n)/3) / (2^(5/4) * sqrt(3) * n^(3/4)) * (1 - (9/(8*Pi) + Pi/36)/sqrt(2*n) + (5 - 135/(4*Pi^2) + Pi^2/81)/(64*n)). - Vaclav Kotesovec, Aug 23 2015, extended Jan 09 2017
a(n) = (1/n)*Sum_{k=1..n} A186099(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017

Extensions

More terms from Vladeta Jovovic, Jun 08 2003

A007331 Fourier coefficients of E_{infinity,4}.

Original entry on oeis.org

0, 1, 8, 28, 64, 126, 224, 344, 512, 757, 1008, 1332, 1792, 2198, 2752, 3528, 4096, 4914, 6056, 6860, 8064, 9632, 10656, 12168, 14336, 15751, 17584, 20440, 22016, 24390, 28224, 29792, 32768, 37296, 39312, 43344, 48448, 50654, 54880, 61544, 64512
Offset: 0

Views

Author

Keywords

Comments

E_{infinity,4} is the unique normalized weight-4 modular form for Gamma_0(2) with simple zeros at i*infinity. Since this has level 2, it is not a cusp form, in contrast to A002408.
a(n+1) is the number of representations of n as a sum of 8 triangular numbers (from A000217). See the Ono et al. link, Theorem 5.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) gives the sum of cubes of divisors d of n such that n/d is odd. This is called sigma^#3(n) in the Ono et al. link. See a formula below. - _Wolfdieter Lang, Jan 12 2017

Examples

			G.f. = q + 8*q^2 + 28*q^3 + 64*q^4 + 126*q^5 + 224*q^6 + 344*q^7 + 512*q^8 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 139, Ex (ii).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809, A076577.

Programs

  • Magma
    Basis( ModularForms( Gamma0(2), 4), 10) [2]; /* Michael Somos, May 27 2014 */
    
  • Maple
    nmax:=40: seq(coeff(series(x*(product((1-x^k)^8*(1+x^k)^16, k=1..nmax)), x, n+1), x, n), n=0..nmax); # Vaclav Kotesovec, Oct 14 2015
  • Mathematica
    Prepend[Table[Plus @@ (Select[Divisors[k + 1], OddQ[(k + 1)/#] &]^3), {k, 0, 39}], 0] (* Ant King, Dec 04 2010 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)]^8 / 256, {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
    a[ n_] := If[ n < 1, 0, Sum[ d^3 Boole[ OddQ[ n/d]], {d, Divisors[ n]}]]; (* Michael Somos, Jun 04 2013 *)
    f[n_] := Total[(2n/Select[ Divisors[ 2n], Mod[#, 4] == 2 &])^3]; Flatten[{0, Array[f, 40] }] (* Robert G. Wilson v, Mar 26 2015 *)
    nmax=60; CoefficientList[Series[x*Product[(1-x^k)^8 * (1+x^k)^16, {k,1,nmax}],{x,0,nmax}], x] (* Vaclav Kotesovec, Oct 14 2015 *)
    QP = QPochhammer; s = q * (QP[-1, q]/2)^16 * QP[q]^8 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^3))}; /* Michael Somos, May 31 2005 */
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A))^8, n))}; /* Michael Somos, May 31 2005 */
    
  • PARI
    a(n)=my(e=valuation(n,2)); 8^e * sigma(n/2^e, 3) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from sympy import divisors
    def a(n):
        return 0 if n == 0 else sum(((n//d)%2)*d**3 for d in divisors(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 24 2017
  • Sage
    ModularForms( Gamma0(2), 4, prec=33).1; # Michael Somos, Jun 04 2013
    

Formula

G.f.: q * Product_{k>=1} (1-q^k)^8 * (1+q^k)^16. - corrected by Vaclav Kotesovec, Oct 14 2015
a(n) = Sum_{0
G.f.: Sum_{n>0} n^3*x^n/(1-x^(2*n)). - Vladeta Jovovic, Oct 24 2002
Expansion of Jacobi theta constant theta_2(q)^8 / 256 in powers of q.
Expansion of eta(q^2)^16 / eta(q)^8 in powers of q. - Michael Somos, May 31 2005
Expansion of x * psi(x)^8 in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jan 15 2012
Expansion of (Q(x) - Q(x^2)) / 240 in powers of x where Q() is a Ramanujan Lambert series. - Michael Somos, Jan 15 2012
Expansion of E_{gamma,2}^2 * E_{0,4} in powers of q.
Euler transform of period 2 sequence [8, -8, ...]. - Michael Somos, May 31 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 - u^2*w + 16*u*v*w - 32*v^2*w + 256*v*w^2. - Michael Somos, May 31 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (2 t)) = 16^(-1) (t / i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A035016. - Michael Somos, Jan 11 2009
Multiplicative with a(2^e) = 2^(3e), a(p^e) = (p^(3(e+1))-1)/(p^3-1). - Mitch Harris, Jun 13 2005
Dirichlet convolution of A154955 by A001158. Dirichlet g.f. zeta(s)*zeta(s-3)*(1-1/2^s). - R. J. Mathar, Mar 31 2011
A002408(n) = -(-1)^n * a(n).
Convolution square of A008438. - Michael Somos, Jun 15 2014
a(1) = 1, a(n) = (8/(n-1))*Sum_{k=1..n-1} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
Sum_{k=1..n} a(k) ~ c * n^4, where c = Pi^4/384 = 0.253669... (A222072). - Amiram Eldar, Oct 19 2022

Extensions

Additional comments from Barry Brent (barryb(AT)primenet.com)
Wrong Maple program replaced by Vaclav Kotesovec, Oct 14 2015
a(0)=0 prepended by Vaclav Kotesovec, Oct 14 2015

A033715 Number of integer solutions (x, y) to the equation x^2 + 2y^2 = n.

Original entry on oeis.org

1, 2, 2, 4, 2, 0, 4, 0, 2, 6, 0, 4, 4, 0, 0, 0, 2, 4, 6, 4, 0, 0, 4, 0, 4, 2, 0, 8, 0, 0, 0, 0, 2, 8, 4, 0, 6, 0, 4, 0, 0, 4, 0, 4, 4, 0, 0, 0, 4, 2, 2, 8, 0, 0, 8, 0, 0, 8, 0, 4, 0, 0, 0, 0, 2, 0, 8, 4, 4, 0, 0, 0, 6, 4, 0, 4, 4, 0, 0, 0, 0, 10, 4, 4, 0, 0, 4, 0, 4, 4, 0, 0, 0, 0, 0, 0, 4, 4, 2, 12, 2, 0, 8, 0
Offset: 0

Keywords

Comments

Theta series of lattice C2 with Gram matrix [ 1, 0; 0, 2]. a(n) is nonzero if and only if n is in A002479. - Michael Somos, Dec 15 2011
Number 17 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted by |a_4(n)| in Kassel and Reutenauer 2015. - Michael Somos, Jun 16 2015

Examples

			G.f. = 1 + 2*q + 2*q^2 + 4*q^3 + 2*q^4 + 4*q^6 + 2*q^8 + 6*q^9 + 4*q^11 + 4*q^12 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 114 Entry 8(iii).
  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, 1999, p. 102, eq. 9.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 19.
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.24).
  • J. W. L. Glaisher, Table of the excess of the number of (8k+1)- and (8k+3)-divisors of a number over the number of (8k+5)- and (8k+7)-divisors, Messenger Math., 31 (1901), 82-91.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 346.

Crossrefs

Number of integer solutions to f(x,y) = n where f(x,y) is the principal binary quadratic form with discriminant d: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), this sequence (d=-8), A028609 (d=-11), A028641 (d=-19), A138811 (d=-43).

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 105); A[1] + 2*A[2] + 2*A[3]; /* Michael Somos, Aug 29 2014 */
  • Maple
    d:=proc(r,m,n) local i,t1; t1:=0; for i from 1 to n do if n mod i = 0 and i-r mod m = 0 then t1:=t1+1; fi; od: t1; end; [seq(2*(d(1,8,n)+d(3,8,n)-d(5,8,n)-d(7,8,n)),n=1..120)];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2], {q, 0, n}]; (* Michael Somos, Sep 09 2012 *)
    a[ n_] := If[ n < 1, Boole[ n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -2, #] &]]; (* Michael Somos, Aug 29 2014 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2] QPochhammer[ q^4])^3 / (QPochhammer[ q] QPochhammer[ q^8])^2, {q, 0, n}]; (* Michael Somos, Aug 29 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * (issquare(n) - issquare(2*n) + 2 * sum( i=1, sqrtint(n\2), issquare(n - 2*i^2))))};
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv( n, d, kronecker( -2, d)))}; /* Michael Somos, Aug 23 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 2], n)[n])}; /* Michael Somos, Aug 23 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^3 * eta(x^4 + A)^3 * eta(x^8 + A)^-2, n))};
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1,2]); Q.representation_number_list(104); # Peter Luschny, Jun 20 2014
    

Formula

Fine gives an explicit formula for a(n) in terms of the divisors of n.
Euler transform of period 8 sequence [ 2, -1, 2, -4, 2, -1, 2, -2, ...].
Expansion of (eta(q^2) * eta(q^4))^3 / (eta(q) * eta(q^8))^2 in powers of q.
Coefficients in expansion of Sum_{i,j=-inf..inf} q^(i^2 + 2*j^2).
G.f. = s(2)^3*s(4)^3/(s(1)^2*s(8)^2), where s(k) := subs(q=q^k, eta(q)), where eta(q) is Dedekind's function, cf. A010815. [Fine]
G.f.: 1 + 2 * Sum_{k>0} Kronecker(-2, n) * x^k / (1 - x^k) = 1 + 2 * Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(4*k)).
G.f.: theta_3(q) * theta_3(q^2) = Product_{k>0} (1 + x^(2*k)) * ((1 + x^k) * (1 - x^(2*k)) / (1 + x^(4*k)))^2.
From Michael Somos, Oct 23 2006: (Start)
Moebius transform is period 8 sequence [ 2, 0, 2, 0, -2, 0, -2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 - 3*u3) * (u1 - u2 - u3 + u6) - (u2 - 3*u6) * (u1 - 2*u2 - u3 + 2*u6). (End)
a(n) = 2 * A002325(n) unless n = 0.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 8^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 09 2012
From Michael Somos, Aug 29 2014: (Start)
Expansion of phi(q) * phi(q^2) in powers of q where phi() is a Ramanujan theta function.
a(2*n) = a(n). a(2*n + 1) = 2 * A113411(n). (End)
From Michael Somos, May 17 2015: (Start)
a(n) = A028572(4*n) = A133692(2*n) = A139093(8*n) = A226225(8*n) = A226240(4*n) = A242609(4*n) = A245572(4*n) / 3 = (-1)^floor((n + 1)/2) * A082564(n).
a(8*n + 5) = a(8*n + 7) = 0. a(8*n + 1) = 2 * A112603(n). a(8*n + 3) = 4 * A033761(n). (End)
a(0) = 1, a(n) = 2 * b(n) for n > 0, where b() is multiplicative with b(2^e) = 1, b(p^e) = e + 1 if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e)/2 if p == 5, 7 (mod 8). - Jianing Song, Sep 04 2018 [Corrected by Jeremy Lovejoy, Nov 12 2024]
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = Pi/sqrt(2) = 2.221441... (A247719). - Amiram Eldar, Dec 16 2023

A080054 G.f.: Product_{n >= 0} (1+x^(2n+1))/(1-x^(2n+1)).

Original entry on oeis.org

1, 2, 2, 4, 6, 8, 12, 16, 22, 30, 40, 52, 68, 88, 112, 144, 182, 228, 286, 356, 440, 544, 668, 816, 996, 1210, 1464, 1768, 2128, 2552, 3056, 3648, 4342, 5160, 6116, 7232, 8538, 10056, 11820, 13872, 16248, 18996, 22176, 25844, 30068, 34936, 40528
Offset: 0

Author

Michael Somos, Jan 26 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
G.f. for pairs of partitions of type R.
G.f. for the number of partitions of 2n in which all odd parts occur with multiplicity 2 and the even parts occur with multiplicity 1. Also g.f. for the number of partitions of 2n free of multiples of 4. All odd parts occur with even multiplicities. The even parts occur with multiplicity 1. - Noureddine Chair, Feb 10 2005
This is also the number of overpartitions of an integer into odd parts. - James Sellers, Feb 18 2008
The Higher Algebra reference on page 517 has an unnumbered example between 251 and 252: "If u^6-v^6+5u^2v^2(u^2-v^2)+4uv(1-u^4v^4)=0, prove that (u^2-v^2)^6=16u^2v^2(1-u^8)(1-v^8). [PEMB. COLL. CAMB.]". It turns out that this is two forms of the modular equation of degree 5. - Michael Somos, May 12 2011
Convolution of A000009 and A000700. - Vaclav Kotesovec, Aug 23 2015
Let F(x) = Product_{n >= 0} (1 + x^(2*n+1))/(1 - x^(2*n+1)). Let m be a nonzero integer. The simple continued fractions expansions of the real numbers F(1/m) may be predictable - given a positive integer n, the sequence of the n-th partial denominators of the continued fraction expansion of F(1/m) may be polynomial or quasi-polynomial in m for sufficiently large m. An example is given below. - Peter Bala, Nov 03 2019

Examples

			G.f. = 1 + 2*q + 2*q^2 + 4*q^3 + 6*q^4 + 8*q^5 + 12*q^6 + 16*q^7 + 22*q^8 + 30*q^9 + ...
From _Peter Bala_, Nov 03 2019: (Start)
F(x) := Product_{n >= 0} (1 + x^(2*n+1))/(1 - x^(2*n+1)).
Simple continued fraction expansions of F(1/(2*m)):
  m=2 [1; 1, 2, 1, 1, 1, 1, 2, 1, 2,   33, 1, 3,  7, 4,  33, 1, 8,  4,    2, 1,...]
  m=3 [1; 2, 2, 2, 1, 1, 2, 2, 2, 2,  110, 1, 2, 46, 3, 110, 1, 3, 12,    1, 7,...]
  m=4 [1; 3, 2, 3, 1, 1, 3, 2, 3, 2,  259, 1, 1,  1, 2,  15, 2, 1,  2,  259, 1,...]
  m=5 [1; 4, 2, 4, 1, 1, 4, 2, 4, 2,  504, 1, 1,  1, 1,  78, 1, 1,  2,  504, 1,...]
  m=6 [1; 5, 2, 5, 1, 1, 5, 2, 5, 2,  869, 1, 1,  2, 2,  23, 2, 2,  2,  869, 1,...]
  m=7 [1; 6, 2, 6, 1, 1, 6, 2, 6, 2, 1378, 1, 1,  2, 1, 110, 1, 2,  2, 1378, 1,...]
  m=8 [1; 7, 2, 7, 1, 1, 7, 2, 7, 2, 2055, 1, 1,  3, 2,  31, 2, 3,  2, 2055, 1,...]
  m=9 [1; 8, 2, 8, 1, 1, 8, 2, 8, 2, 2924, 1, 1,  3, 1, 142, 1, 3,  2, 2924, 1,...]
The sequence of the 10th partial denominators [33,110,259,504,...], starting at m = 2, appears to be given by the polynomial 4*m^3 + m - 1.
The sequence of the 15th partial denominators [15,78,23,110,31,142,...], starting at m = 4, appears to be quasi-polynomial in m, with constituent polynomials 4*m - 1 and 16*m - 2. (End)
		

References

  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054.
  • A. Cayley, An Elementary Treatise on Elliptic Functions, 2nd ed., G. Bell and Sons, 1895, p. 245, Art. 333.
  • J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), pp. 111-112. see Eq. VI
  • J. W. L. Glaisher, On Some Continued Fractions, Messenger of Mathematics, 7 (1878), pp. 67-68, see p. 68
  • H. S. Hall and S. R. Knight, Higher Algebra, Macmillan, 1957, p. 517.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-2) +add(2*b(n-i*j, i-2), j=1..n/i)))
        end:
    a:= n-> b(n, n-1+irem(n, 2)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 10 2014
    # alternative program using expansion of f(x, x^3) / f(-x, -x^3):
    with(gfun): series( add(x^(n*(2*n-1)), n = -8..8)/add((-1)^n*x^(n*(2*n-1)), n = -8..8), x, 100): seriestolist(%); # Peter Bala, Feb 05 2021
  • Mathematica
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m )^(-1/8), {q, 0, n}]]; (* Michael Somos, Aug 03 2011 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] / EllipticTheta[ 4, 0, q])^(1/2), {q, 0, n}]; (* Michael Somos, Aug 03 2011 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q] / QPochhammer[ q], {q, 0, n}]; (* Michael Somos, May 10 2014 *)
    a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {-1}, {}, q^2, q], {q, 0, n}]; (* Michael Somos, May 10 2014 *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 2] + Sum[2*b[n - i*j, i - 2], {j, 1, n/i}]]];
    a[n_] := b[n, n - 1 + Mod[n, 2]];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 05 2017, after Alois P. Heinz *)
  • PARI
    {a(n) = my(A, m); if( n<0, 0, m=1; A = 1 + 2*x + O(x^2); while( m
    				
  • PARI
    a(n)=polcoeff(exp(2*sum(k=0,n\2,sigma(2*k+1)/(2*k+1)*x^(2*k+1))),n) /* Paul D. Hanna */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)), n))}; /* Michael Somos, Jul 07 2005 */

Formula

Expansion of f(q) / f(-q) in powers of q where f() is a Ramanujan theta function.
Expansion of (1 - k^2)^(-1/8) = k'^(-1/4) in powers of the nome q = exp(-Pi K'/K).
Expansion of eta(q^2)^3 / (eta(q^4) * eta(q)^2) in powers of q.
Euler transform of period 4 sequence [ 2, -1, 2, 0, ...].
(theta_3(q) / theta_4(q))^(1/2) = (phi(q) / phi(-q))^(1/2) = chi(q) / chi(-q) = psi(q) / psi(-q) = f(q) / f(-q) where phi{}, chi(), psi(), f() are Ramanujan theta functions.
G.f.: A(x) = exp( 2*sum_{n>=0} sigma(2*n+1)/(2*n+1)*x^(2*n+1) ). - Paul D. Hanna, Mar 01 2004
G.f. satisfies: A(-x) = 1/A(x), (A(x)+A(-x))/2 = A(x^2)*A(x^4)^2, A(x) = sqrt((A(x^2)^4+1)/2) + sqrt((A(x^2)^4-1)/2). - Paul D. Hanna, Mar 27 2004
Another g.f.: 1/product_{ k>= 1 } (1+x^(2*k))*(1-x^(2*k-1))^2. - Vladeta Jovovic, Mar 29 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v^3) * (v + 2*u^3) - u * (u^3 - v). - Michael Somos, Aug 03 2011
G.f. A(x) satisfies 0 = f(A(x), A(x^5)) where f(u, v) = (u^2 - v^2)^6 - 16 * u^2 * v^2 * (1 - u^8) * (1 - v^8). - Michael Somos, May 12 2011
G.f. A(x) satisfies 0 = f(A(x), A(x^7)) where f(u, v) = (1 - u^8) * (1 - v^8) - (1 - u*v)^8. - Michael Somos, Jan 01 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A029838. - Michael Somos, Aug 03 2011
G.f.: (theta_3/theta_4)^(1/2) = ((Sum_{k in Z} x^(k^2))/(Sum_{k in Z} (-x)^(k^2)))^(1/2) = Product_{k>0} (1 - x^(4k-2))/((1 - x^(4k-1))(1 - x^(4k-3)))^2.
G.f.: Product_{ k >= 1 } (1 + x^(2*k-1))*(1 + x^k) = product_{ k >= 1 } (1 + x^(2*k-1))/(1 - x^(2*k-1)).
G.f.: 1 + 2*x / (1 - x) + 2*x^3 * (1 + x) / ((1 - x)*(1 - x^2)) + 2*x^6 * (1 + x)*(1 + x^2) / ((1 - x)*(1 - x^2)*(1 - x^3)) + ... [Glaisher 1876] - Michael Somos, Jun 20 2012
G.f.: 1 / (1 - 2*x / (1 + x - (x^2 - x^4) / (1 + x^3 - (x^3 - x^7) / (1 + x^5 - (x^4 - x^10) / (1 + x^7 - ...))))) [Glaisher 1878] - Michael Somos, Jun 24 2012
a(n) = (-1)^floor(n/2) * A080015(n) = (-1)^n * A108494(n). Convolution inverse is A108494. Convolution square is A007096.
Empirical : Sum_{n>=0} exp(-Pi)^n * a(n) = 2^(1/8). - Simon Plouffe, Feb 20 2011
Empirical : Sum_{n>=0} (-exp(-Pi))^n * a(n) = 1/2^(1/8). - Simon Plouffe, Feb 20 2011
a(n) ~ Pi * BesselI(1, Pi*sqrt(n/2)) / (4*sqrt(n)) ~ exp(Pi*sqrt(n/2)) / (2^(9/4) * n^(3/4)) * (1 - 3/(4*Pi*(sqrt(2*n))) - 15/(64*Pi^2*n)). - Vaclav Kotesovec, Aug 23 2015, extended Jan 09 2017
Simon Plouffe's empirical observations are true. Furthermore, for every positive rational p, Sum_{n>=0} exp(-Pi*sqrt(p))^n * a(n) = 1/(Sum_{n>=0} (-exp(-Pi*sqrt(p)))^n * a(n)) is an algebraic number (see the MathOverflow link). - Vladimir Reshetnikov, Nov 23 2016
G.f.: f(x,x^3)/f(-x,-x^3) = ( Sum_{n = -oo..oo} x^(n*(2*n-1)) )/( Sum_{n = -oo..oo} (-1)^n*x^(n*(2*n-1)) ), where f(a,b) = Sum_{n = -oo..oo} a^(n*(n+1)/2)*b^(n*(n-1)/2) is Ramanujan's 2-variable theta function. - Peter Bala, Feb 05 2021
G.f. A(q) = (-lambda(-q)/lambda(q))^(1/8), where lambda(q) = 16*q - 128*q^2 + 704*q^3 - 3072*q^4 + ... is the elliptic modular function in powers of the nome q = exp(i*Pi*t), the g.f. of A115977; lambda(q) = k(q)^2, where k(q) = (theta_2(q) / theta_3(q))^2 is the elliptic modulus. - Peter Bala, Sep 26 2023
Recurrence: a(n) = c(n) + Sum_{k = 1..floor((-1 + sqrt(1 + 8*n))/2)} (-1)^(1 + k*(k+1)/2) * a(n - k*(k+1)/2), where c(n) = 1 if n is a triangular number, otherwise c(n) = 0. See A010054. - Peter Bala, Jun 08 2025

Extensions

Definition simplified by N. J. A. Sloane, Apr 24 2014

A080995 Characteristic function of generalized pentagonal numbers A001318.

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
Offset: 0

Author

Michael Somos, Feb 27 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Repeatedly [1,[0,]^2k,1,[0,]^k], k>=0; characteristic function of generalized pentagonal numbers: a(A001318(n))=1, a(A090864(n))=0. - Reinhard Zumkeller, Apr 22 2006
Starting with offset 1 with 1's signed (++--++,...), i.e., (1, 1, 0, 0, -1, 0, -1, 0, ...); is the INVERTi transform of A000041 starting (1, 2, 3, 5, 7, 11, ...). - Gary W. Adamson, May 17 2013
Number 9 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016

Examples

			G.f. = 1 + x + x^2 + x^5 + x^7 + x^12 + x^15 + x^22 + x^26 + x^35 + x^40 + x^51 + ...
G.f. = q + q^25 + q^49 + q^121 + q^169 + q^289 + q^361 + q^529 + q^625 + ...
		

References

  • Percy A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p. 81, Article 331.

Crossrefs

Programs

  • Haskell
    a080995 = a033683 . (+ 1) . (* 24)  -- Reinhard Zumkeller, Nov 14 2015
  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (Series[ EllipticTheta[ 3, Log[y] / (2 I), x^(3/2)], {x, 0, n + Floor@Sqrt[n]}] // Normal // TrigToExp) /. {y -> x^(1/2)}, {x, 0, n}]]; (* Michael Somos, Nov 18 2011 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^3] / QPochhammer[ x, x^2], {x, 0, n}]; (* Michael Somos, Jun 08 2013 *)
    a[ n_] := If[ n < 0, 0, Boole[ IntegerQ[ Sqrt[ 24 n + 1]]]]; (* Michael Somos, Jun 08 2013 *)
  • PARI
    {a(n) = if( n<0, 0, abs( polcoeff( eta(x + x * O(x^n)), n)))};
    
  • PARI
    {a(n) = issquare( 24*n + 1)}; /* Michael Somos, Apr 13 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A) * eta(x^6 + A)), n))};
    

Formula

Expansion of phi(-x^3) / chi(-x) in powers of x where phi(), chi() are Ramanujan theta functions. - Michael Somos, Sep 14 2007
Expansion of psi(x) - x * psi(x^9) in powers of x^3 where psi() is a Ramanujan theta function. - Michael Somos, Sep 14 2007
Expansion of f(x, x^2) in powers of x where f() is Ramanujan's two-variable theta function.
Expansion of q^(-1/24) * eta(q^2) * eta(q^3)^2 / (eta(q) * eta(q^6)) in powers of q.
a(n) = b(24*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p>3. - Michael Somos, Jun 06 2005
Euler transform of period 6 sequence [ 1, 0, -1, 0, 1, -1, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 2^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A089810.
G.f.: Product_{k>0} (1 - x^(3*k)) / (1 - x^k + x^(2*k)). - Michael Somos, Jan 26 2008
G.f.: Sum x^(n*(3n+1)/2), n=-inf..inf [the exponents are the pentagonal numbers, A000326].
a(n) = |A010815(n)| = A089806(2*n) = A033683(24*n + 1).
For n > 0, a(n) = b(n) - b(n-1) + c(n) - c(n-1), where b(n) = floor(sqrt(2n/3+1/36)+1/6) (= A180447(n)) and c(n) = floor(sqrt(2n/3+1/36)-1/6) (= A085141(n)). - Mikael Aaltonen, Mar 08 2015
a(n) = (-1)^n * A133985(n). - Michael Somos, Jul 12 2015
a(n) = A000009(n) (mod 2). - John M. Campbell, Jun 29 2016
Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = 2*sqrt(2/3) = 1.632993... . - Amiram Eldar, Jan 13 2024

Extensions

Minor edits by N. J. A. Sloane, Feb 03 2012

A114088 Triangle read by rows: T(n,k) is number of partitions of n whose tail below its Durfee square has k parts (n >= 1; 0 <= k <= n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 5, 5, 3, 2, 1, 1, 1, 5, 6, 6, 5, 3, 2, 1, 1, 1, 6, 8, 8, 7, 5, 3, 2, 1, 1, 1, 7, 10, 10, 9, 7, 5, 3, 2, 1, 1, 1, 9, 13, 13, 12, 10, 7, 5, 3, 2, 1, 1, 1, 10, 16, 17, 15, 13, 10, 7, 5, 3, 2, 1, 1, 1, 12, 20, 22, 20, 17
Offset: 1

Author

Emeric Deutsch, Feb 12 2006

Keywords

Comments

From Gus Wiseman, May 21 2022: (Start)
Also the number of integer partitions of n with k parts below the diagonal. For example, the partition (3,2,2,1) has two parts (at positions 3 and 4) below the diagonal (1,2,3,4). Row n = 8 counts the following partitions:
8 71 611 5111 41111 311111 2111111 11111111
44 332 2222 22211 221111
53 422 3221 32111
62 431 3311
521 4211
Indices of parts below the diagonal are also called strong nonexcedances.
(End)

Examples

			T(7,2)=3 because we have [5,1,1], [3,2,1,1] and [2,2,2,1] (the bottom tails are [1,1], [1,1] and [2,1], respectively).
Triangle starts:
  1;
  1, 1;
  1, 1, 1;
  2, 1, 1, 1;
  2, 2, 1, 1, 1;
  3, 3, 2, 1, 1, 1;
  3, 4, 3, 2, 1, 1, 1;
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
  • G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).

Crossrefs

Row sums: A000041.
Column k = 0: A003114.
Weak opposite: A115994.
Permutations: A173018, weak A123125.
Ordered: A352521, rank stat A352514, weak A352522.
Opposite ordered: A352524, first col A008930, rank stat A352516.
Weak opposite ordered: A352525, first col A177510, rank stat A352517.
Weak: A353315.
Opposite: A353318.
A000700 counts self-conjugate partitions, ranked by A088902.
A115720 counts partitions by Durfee square, rank stat A257990.
A352490 gives the (strong) nonexcedance set of A122111, counted by A000701.

Programs

  • Maple
    g:=sum(z^(k^2)/product((1-z^j)*(1-t*z^j),j=1..k),k=1..20): gserz:=simplify(series(g,z=0,30)): for n from 1 to 14 do P[n]:=coeff(gserz,z^n) od: for n from 1 to 14 do seq(coeff(t*P[n],t^j),j=1..n) od; # yields sequence in triangular form
  • Mathematica
    subdiags[y_]:=Length[Select[Range[Length[y]],#>y[[#]]&]];
    Table[Length[Select[IntegerPartitions[n],subdiags[#]==k&]],{n,1,15},{k,0,n-1}] (* Gus Wiseman, May 21 2022 *)
  • PARI
    T_qt(max_row) = {my(N=max_row+1, q='q+O('q^N), h = sum(k=1,N, q^(k^2)/prod(j=1,k, (1-q^j)*(1-t*q^j))) ); for(i=1, N-1, print(Vecrev(polcoef(h, i))))}
    T_qt(10) \\ John Tyler Rascoe, Oct 24 2024

Formula

G.f. = Sum_{k>=1} q^(k^2) / Product_{j=1..k} (1 - q^j)*(1 - t*q^j).
Sum_{k=0..n-1} k*T(n,k) = A114089(n).

A022567 Expansion of Product_{m>=1} (1+x^m)^2.

Original entry on oeis.org

1, 2, 3, 6, 9, 14, 22, 32, 46, 66, 93, 128, 176, 238, 319, 426, 562, 736, 960, 1242, 1598, 2048, 2608, 3306, 4175, 5248, 6570, 8198, 10190, 12622, 15589, 19190, 23552, 28830, 35190, 42842, 52034, 63040, 76198, 91904, 110604, 132832, 159216, 190464, 227417
Offset: 0

Author

N. J. A. Sloane, Jun 14 1998

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of partitions of n into distinct parts, with 2 types of each part. E.g., for n=4, we consider k and k* to be different versions of k and so we have 4, 4*, 31, 31*, 3*1, 3*1*, 22*, 211*, 2*11*, thus a(4)=9. - Jon Perry, Apr 04 2004
Number of partitions of n into odd parts, each part being of two kinds. E.g., a(3)=6 because we have 3, 3', 1+1+1, 1+1+1', 1+1'+1', 1'+1'+1'. - Emeric Deutsch, Mar 22 2005
Euler transform of period 2 sequence [2,0,2,0,...]. - Emeric Deutsch, Mar 22 2005
Equals A000041 convolved with A010054. - Gary W. Adamson, Jun 11 2009
The sum of the least gaps in all partitions of n. The "least gap" of a partition is the least positive integer that is not a part of the partition. Example: a(4) = 9 because the least gaps in [4], [3,1], [2,2], [2,1,1], and [1,1,1,1] are 1, 2, 1, 3, and 2, respectively. - Emeric Deutsch, May 18 2015
Number of 2-regular bipartitions of n. - N. J. A. Sloane, Oct 20 2019
The least gap is also known as the minimal excludant or mex; see Andrews and Newman. - George Beck, Dec 10 2020

Examples

			G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 9*x^4 + 14*x^5 + 22*x^6 + 32*x^7 + 46*x^8 + ...
G.f. = q + 2*q^13 + 3*q^25 + 6*q^37 + 9*q^49 + 14*q^61 + 22*q^73 + 32*q^85 + ...
		

References

  • P. J. Grabner, A. Knopfmacher, Analysis of some new partition statistics, Ramanujan J., 12, 2006, 439-454.
  • Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.

Crossrefs

Cf. A010054. - Gary W. Adamson, Jun 11 2009
Column k=2 of A286335.
Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548.

Programs

  • Magma
    Coefficients(&*[(1+x^m)^2:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
    
  • Maple
    A022567 := proc(n)
        local x,m;
        product((1+x^m)^2,m=1..n) ;
        expand(%) ;
        coeff(%,x,n) ;
    end proc: # R. J. Mathar, Jun 18 2016
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2]^-2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 + q^k, {k, n}]^2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    (QPochhammer[-1, x]^2/4 + O[x]^30)[[3]] (* Vladimir Reshetnikov, Sep 22 2016 *)
    nmax = 50; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 2; poly[[3]] = 1; Do[Do[Do[poly[[j+1]] += poly[[j-k+1]], {j, nmax, k, -1}]; , {p, 1, 2}], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 14 2017 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, 1 + x^k, 1 + x * O(x^n))^2, n))}; /* Michael Somos, Mar 21 2004 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^2, n))}; /* Michael Somos, Jun 03 2005 */
    
  • SageMath
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(0, 1, 0, 2)
    a = EulerTransform(b)
    print([a(n) for n in range(45)]) # Peter Luschny, Nov 11 2020

Formula

a(n) = p(n)+p(n-1)+p(n-3)+p(n-6)+...+p(n-k*(k+1)/2)+..., where p() is A000041(). E.g. a(8) = p(8)+p(7)+p(5)+p(2) = 22+15+7+2 = 46. - Vladeta Jovovic, Aug 09 2004
Expansion of q^(-1/12) * (eta(q^2) / eta(q))^2 in powers of q. - Michael Somos, Apr 27 2008
Expansion of chi(-q)^(-2) in powers of q where chi() is a Ramanujan theta function. - Michael Somos, Apr 27 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A022597. - Michael Somos, Apr 27 2008
G.f.: Product_{k>0} (1 + x^k)^2.
Convolution square of A000009. Convolution inverse of A022597. - Michael Somos, Apr 27 2008
Parity result: a(n) is even except when n is twice a generalized pentagonal number (i.e., of the form 2*A001318(m) for some m). - Peter Bala, Mar 19 2009
a(n) ~ exp(Pi * sqrt(2*n/3)) / (4 * 6^(1/4) * n^(3/4)) * (1 + (Pi/(12*sqrt(6)) - 3*sqrt(3/2)/(8*Pi)) / sqrt(n) + (Pi^2/1728 - 45/(256*Pi^2) - 5/64)/n). - Vaclav Kotesovec, Mar 05 2015, extended Jan 22 2017
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(2*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
Previous Showing 41-50 of 1638 results. Next