A008815
Expansion of (1+x^8)/((1-x)^2*(1-x^8)).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 17, 20, 23, 26, 29, 32, 37, 42, 47, 52, 57, 62, 67, 72, 79, 86, 93, 100, 107, 114, 121, 128, 137, 146, 155, 164, 173, 182, 191, 200, 211, 222, 233, 244, 255, 266, 277, 288, 301, 314, 327, 340, 353, 366, 379, 392, 407, 422
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,1,-2,1).
-
a:=[1,2,3,4,5,6,7,8,11,14];; for n in [11..50] do a[n]:=2*a[n-1] -a[n-2]+a[n-8]-2*a[n-9]+a[n-10]; od; a; # G. C. Greubel, Sep 12 2019
-
I:=[1,2,3,4,5,6,7,8,11,14]; [n le 10 select I[n] else 2*Self(n-1) -Self(n-2)+Self(n-8)-2*Self(n-9)+Self(n-10): n in [1..50]]; // Vincenzo Librandi, May 14 2019
-
seq(coeff(series((1+x^8)/((1-x)^2*(1-x^8)), x, n+1), x, n), n = 0..50); # G. C. Greubel, Sep 12 2019
-
CoefficientList[Series[(1+x^8)/(1-x)^2/(1-x^8), {x, 0, 50}], x] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,8,11,14}, 50] (* Harvey P. Dale, Dec 17 2016 *)
-
a(n)=(n*(n+2)+14+4*(n%4-1)*(-1)^(n\4))\8 \\ Tani Akinari, Jul 25 2013
-
def A008815_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+x^8)/((1-x)^2*(1-x^8))).list()
A008815_list(50) # G. C. Greubel, Sep 12 2019
A030978
Maximal number of non-attacking knights on an n X n board.
Original entry on oeis.org
0, 1, 4, 5, 8, 13, 18, 25, 32, 41, 50, 61, 72, 85, 98, 113, 128, 145, 162, 181, 200, 221, 242, 265, 288, 313, 338, 365, 392, 421, 450, 481, 512, 545, 578, 613, 648, 685, 722, 761, 800, 841, 882, 925, 968, 1013, 1058, 1105, 1152, 1201, 1250, 1301, 1352, 1405
Offset: 0
- H. E. Dudeney, The Knight-Guards, #319 in Amusements in Mathematics; New York: Dover, p. 95, 1970.
- J. S. Madachy, Madachy's Mathematical Recreations, New York, Dover, pp. 38-39 1979.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 751.
- Eric Weisstein's World of Mathematics, Independence Number
- Eric Weisstein's World of Mathematics, Knight Graph
- Eric Weisstein's World of Mathematics, Knights Problem
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
-
CoefficientList[Series[x (2 x^5 - 4 x^4 + 3 x^2 - 2 x - 1)/((x - 1)^3 (x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 19 2013 *)
Join[{0, 1, 4}, Table[If[EvenQ[n], n^2/2, (n^2 + 1)/2], {n, 3, 60}]] (* Harvey P. Dale, Nov 28 2014 *)
Join[{0, 1, 4}, LinearRecurrence[{2, 0, -2, 1}, {5, 8, 13, 18}, 60]] (* Harvey P. Dale, Nov 28 2014 *)
Table[If[n == 2, 4, (1 - (-1)^n + 2 n^2)/4], {n, 20}] (* Eric W. Weisstein, May 05 2017 *)
Table[Length[FindIndependentVertexSet[KnightTourGraph[n, n]][[1]]], {n, 20}] (* Eric W. Weisstein, Jun 27 2017 *)
A188211
T(n,k)=Number of nondecreasing arrangements of n numbers in -(n+k-2)..(n+k-2) with sum zero.
Original entry on oeis.org
1, 1, 2, 1, 3, 5, 1, 4, 8, 18, 1, 5, 13, 33, 73, 1, 6, 18, 55, 141, 338, 1, 7, 25, 86, 252, 676, 1656, 1, 8, 32, 126, 414, 1242, 3370, 8512, 1, 9, 41, 177, 649, 2137, 6375, 17575, 45207, 1, 10, 50, 241, 967, 3486, 11322, 33885, 94257, 246448, 1, 11, 61, 318, 1394, 5444
Offset: 1
Some solutions for n=5 k=3
.-5...-5...-4...-4...-6...-3...-6...-4...-2...-6...-2...-6...-4...-5...-5...-4
.-2...-1...-4...-2...-5...-3...-1...-3...-1...-6...-1...-1...-3...-4...-3...-4
..0....0...-1...-2...-1...-1....0...-1...-1....1...-1....0....1...-1....0....1
..1....0....3....3....6....2....2....3....1....5....0....1....1....5....4....3
..6....6....6....5....6....5....5....5....3....6....4....6....5....5....4....4
A199847
T(n,k)=Number of -k..k arrays x(0..n-1) of n elements with zero sum and no element more than one greater than the previous.
Original entry on oeis.org
1, 1, 2, 1, 3, 5, 1, 4, 8, 11, 1, 5, 13, 23, 26, 1, 6, 18, 42, 66, 63, 1, 7, 25, 68, 132, 192, 153, 1, 8, 32, 103, 239, 428, 575, 376, 1, 9, 41, 149, 399, 845, 1393, 1739, 931, 1, 10, 50, 206, 630, 1532, 2958, 4561, 5307, 2317, 1, 11, 61, 276, 944, 2600, 5754, 10349, 15032
Offset: 1
Some solutions for n=7 k=6
..5....4....2....2....6....5....2...-1....3....3....6....4....6....6....5....3
..4....2....1....3....6....2....1....0....3....1....3....1....6....1....5...-1
..1....2....1....3....0....3....1....1...-1....1....4....1...-2....1...-1...-1
..0...-1...-1....0...-4...-2....1....0....0...-1....1....2...-2....1...-3....0
.-2....0...-2...-1...-3...-3....1....1....1...-1...-2....2...-2....0...-3...-1
.-2...-1...-1...-1...-2...-3....0....0....0....0...-6...-5...-3...-3...-2....0
.-6...-6....0...-6...-3...-2...-6...-1...-6...-3...-6...-5...-3...-6...-1....0
A277239
Number A(n,k) of factorizations of m^n into exactly k factors, where m is a product of two distinct primes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 5, 1, 0, 1, 2, 8, 8, 1, 0, 1, 2, 9, 19, 13, 1, 0, 1, 2, 9, 27, 42, 18, 1, 0, 1, 2, 9, 30, 74, 78, 25, 1, 0, 1, 2, 9, 31, 95, 168, 139, 32, 1, 0, 1, 2, 9, 31, 105, 248, 363, 224, 41, 1, 0, 1, 2, 9, 31, 108, 300, 614, 703, 350, 50, 1, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 5, 8, 9, 9, 9, 9, 9, ...
0, 1, 8, 19, 27, 30, 31, 31, 31, ...
0, 1, 13, 42, 74, 95, 105, 108, 109, ...
0, 1, 18, 78, 168, 248, 300, 325, 335, ...
0, 1, 25, 139, 363, 614, 814, 938, 1002, ...
0, 1, 32, 224, 703, 1367, 1996, 2457, 2741, ...
0, 1, 41, 350, 1297, 2879, 4642, 6128, 7168, ...
Columns k=0-10 give:
A000007,
A000012,
A000982(n+1),
A101427,
A277240,
A277241,
A277242,
A277243,
A277244,
A277245,
A277246.
A008816
Expansion of (1+x^9)/((1-x)^2*(1-x^9)).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 88, 95, 102, 109, 116, 123, 130, 137, 144, 153, 162, 171, 180, 189, 198, 207, 216, 225, 236, 247, 258, 269, 280, 291, 302, 313, 324, 337, 350, 363, 376, 389, 402
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,1,-2,1).
-
a:=[1,2,3,4,5,6,7,8,9,12,15];; for n in [12..70] do a[n]:=2*a[n-1] -a[n-2]+a[n-9]-2*a[n-10]+a[n-11]; od; a; # G. C. Greubel, Sep 12 2019
-
R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^9)/((1-x)^2*(1-x^9)) )); // G. C. Greubel, Sep 12 2019
-
seq(coeff(series((1+x^9)/((1-x)^2*(1-x^9)), x, n+1), x, n), n = 0..50); # G. C. Greubel, Sep 12 2019
-
LinearRecurrence[{2,-1,0,0,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,8,9,12,15}, 70] (* or *) CoefficientList[Series[(1+x^9)/((1-x)^2*(1-x^9)), {x,0, 70}], x] (* G. C. Greubel, Sep 12 2019 *)
-
my(x='x+O('x^70)); Vec((1+x^9)/((1-x)^2*(1-x^9))) \\ G. C. Greubel, Sep 12 2019
-
def A008815_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+x^8)/((1-x)^2*(1-x^8))).list()
A008815_list(70) # G. C. Greubel, Sep 12 2019
A008817
Expansion of (1+x^10)/((1-x)^2*(1-x^10)).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 97, 104, 111, 118, 125, 132, 139, 146, 153, 160, 169, 178, 187, 196, 205, 214, 223, 232, 241, 250, 261, 272, 283, 294, 305, 316, 327, 338, 349, 360
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,1,-2,1).
-
a:=[1,2,3,4,5,6,7,8,9,10, 13,16];; for n in [13..80] do a[n]:=2*a[n-1]-a[n-2]+a[n-10]-2*a[n-11]+a[n-12]; od; a; # G. C. Greubel, Sep 12 2019
-
R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( (1+x^10)/((1-x)^2*(1-x^10)) )); // G. C. Greubel, Sep 12 2019
-
seq(coeff(series((1+x^10)/((1-x)^2*(1-x^10)), x, n+1), x, n), n = 0..80); # G. C. Greubel, Sep 12 2019
-
CoefficientList[Series[(1+x^10)/(1-x)^2/(1-x^10), {x,0,80}], x] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,8,9,10, 13,16}, 80] (* Harvey P. Dale, Jul 31 2014 *)
-
my(x='x+O('x^80)); Vec((1+x^10)/((1-x)^2*(1-x^10))) \\ G. C. Greubel, Sep 12 2019
-
def A008817_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+x^10)/((1-x)^2*(1-x^10))).list()
A008817_list(80) # G. C. Greubel, Sep 12 2019
A081352
Main diagonal of square maze arrangement of natural numbers A081349.
Original entry on oeis.org
1, 7, 11, 21, 29, 43, 55, 73, 89, 111, 131, 157, 181, 211, 239, 273, 305, 343, 379, 421, 461, 507, 551, 601, 649, 703, 755, 813, 869, 931, 991, 1057, 1121, 1191, 1259, 1333, 1405, 1483, 1559, 1641, 1721, 1807, 1891, 1981, 2069, 2163, 2255, 2353, 2449, 2551
Offset: 0
-
I:=[1,7,11,21]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 08 2013
-
A081352:=n->(n + 1)*(n + 2) - (-1)^n; seq(A081352(n), n=0..50); # Wesley Ivan Hurt, Feb 26 2014
-
CoefficientList[Series[(1 + 5 x - 3 x^2 + x^3) / ((1 + x) (1 - x)^3), {x, 0, 60}], x] (* Vincenzo Librandi, Aug 08 2013 *)
-
x='x+O('x^99); Vec((1+5*x-3*x^2+x^3)/((1+x)*(1-x)^3)) \\ Altug Alkan, Mar 26 2016
A116940
Greatest m such that A116939(m) = n.
Original entry on oeis.org
0, 3, 6, 11, 16, 23, 30, 39, 48, 59, 70, 83, 96, 111, 126, 143, 160, 179, 198, 219, 240, 263, 286, 311, 336, 363, 390, 419, 448, 479, 510, 543, 576, 611, 646, 683, 720, 759, 798, 839, 880, 923, 966, 1011, 1056, 1103, 1150, 1199, 1248, 1299, 1350, 1403, 1456
Offset: 0
a(n) = A000982(n) + A005843(n).
From _Andrew Rupinski_, Nov 30 2009: (Start)
a(1) = 3 and binomial(6,3)-binomial(6,1) = binomial(6,2)-binomial(6,0).
a(1) = 3 and the fundamental representations of Sp(3) are of dimensions 6, 14 and 14. a(2) = 6 and the fundamental representations of Sp(6) are of dimensions 12, 65, 208, 429, 572, and 429. (End)
-
import Data.List (elemIndices)
a116940 n = last $ elemIndices n $ takeWhile (<= n + 1) a116939_list
-- Reinhard Zumkeller, Jun 28 2013
-
[(2*n*(n+4) -(-1)^n +1)/4: n in [0..55]]; // G. C. Greubel, Jan 26 2020
-
seq( (2*(n+2)^2 -(-1)^n -7)/4, n=0..55); # G. C. Greubel, Jan 26 2020
-
a = {0}; Do[AppendTo[a, If[Count[a, #-1] > #-1, #+1, #-1]] &@ a[[n]], {n, 1500}]; Most@ Values@ Map[Last, PositionIndex@ a] - 1 (* Michael De Vlieger, Dec 07 2016, Version 10 *)
Table[(2*(n+2)^2 -(-1)^n -7)/4, {n,0,55}] (* G. C. Greubel, Jan 26 2020 *)
-
vector(56, n, (2*(n+1)^2 +(-1)^n -7)/4) \\ G. C. Greubel, Jan 26 2020
-
[(2*n*(n+4) -(-1)^n +1)/4 for n in (0..55)] # G. C. Greubel, Jan 26 2020
A131474
a(n) = ceiling(n/2)*ceiling(n^2/2).
Original entry on oeis.org
0, 1, 2, 10, 16, 39, 54, 100, 128, 205, 250, 366, 432, 595, 686, 904, 1024, 1305, 1458, 1810, 2000, 2431, 2662, 3180, 3456, 4069, 4394, 5110, 5488, 6315, 6750, 7696, 8192, 9265, 9826, 11034, 11664, 13015, 13718, 15220, 16000, 17661
Offset: 0
Comments