cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 248 results. Next

A068764 Generalized Catalan numbers 2*x*A(x)^2 -A(x) +1 -x =0.

Original entry on oeis.org

1, 1, 4, 18, 88, 456, 2464, 13736, 78432, 456416, 2697088, 16141120, 97632000, 595912960, 3665728512, 22703097472, 141448381952, 885934151168, 5575020435456, 35230798994432, 223485795258368, 1422572226146304, 9083682419818496, 58169612565614592, 373486362257899520, 2403850703479816192
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Comments

a(n) = K(2,2; n)/2 with K(a,b; n) defined in a comment to A068763.
Hankel transform is A166232(n+1). - Paul Barry, Oct 09 2009

Examples

			G.f. = 1 + x + 4*x^2 + 18*x^3 + 88*x^4 + 456*x^5 + 2464*x^6 + 13736*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(1-Sqrt[1-8*x*(1-x)])/(4*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
    Round@Table[4^(n-1) Hypergeometric2F1[(1-n)/2, 1-n/2, 2, 1/2] + KroneckerDelta[n]/Sqrt[2], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 07 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], 4^(n - 1) Hypergeometric2F1[ (1 - n)/2, (2 - n)/2, 2, 1/2]]; (* Michael Somos, Nov 08 2015 *)
  • Maxima
    a(n):=sum(binomial(n-1,k-1)*1/k*sum(binomial(k,j)*binomial(k+j,j-1),j,1,k),k,1,n); /* Vladimir Kruchinin, Aug 11 2010 */
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, n--;  A = x * O(x^n); n! * simplify( polcoeff( exp(4*x + A) * besseli(1, 2*x * quadgen(8) + A), n)))}; /* Michael Somos, Mar 31 2007 */
    
  • PARI
    x='x+O('x^66); Vec((1-sqrt(1-8*x*(1-x)))/(4*x)) \\ Joerg Arndt, May 06 2013

Formula

G.f.: (1-sqrt(1-8*x*(1-x)))/(4*x).
a(n+1) = 2*sum(a(k)*a(n-k), k=0..n), n>=1, a(0) = 1 = a(1).
a(n) = (2^n)*p(n, -1/2) with the row polynomials p(n, x) defined from array A068763.
E.g.f. (offset -1) is exp(4*x)*BesselI(1, 2*sqrt(2)*x)/(sqrt(2)*x). - Vladeta Jovovic, Mar 31 2004
The o.g.f. satisfies A(x) = 1 + x*(2*A(x)^2 - 1), A(0) = 1. - Wolfdieter Lang, Nov 13 2007
a(n) = subs(t=1,(d^(n-1)/dt^(n-1))(-1+2*t^2)^n)/n!, n >= 2, due to the Lagrange series for the given implicit o.g.f. equation. This formula holds also for n=1 if no differentiation is used. - Wolfdieter Lang, Nov 13 2007, Feb 22 2008
1/(1-x/(1-x-2x/(1-x/(1-x-2x/(1-x/(1-x-2x/(1-..... (continued fraction). - Paul Barry, Jan 29 2009
a(n) = A166229(n)/(2-0^n). - Paul Barry, Oct 09 2009
a(n) = sum(binomial(n-1,k-1)*1/k*sum(binomial(k,j)*binomial(k+j,j-1),j,1,k),k,1,n), n>0. - Vladimir Kruchinin, Aug 11 2010
D-finite with recurrence: (n+1)*a(n) = 4*(2*n-1)*a(n-1) - 8*(n-2)*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ sqrt(1+sqrt(2))*(4+2*sqrt(2))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 13 2012
a(n) = 4^(n-1)*hypergeom([(1-n)/2,1-n/2], [2], 1/2) + 0^n/sqrt(2). - Vladimir Reshetnikov, Nov 07 2015
0 = a(n)*(+64*a(n+1) - 160*a(n+2) + 32*a(n+3)) + a(n+1)*(+32*a(n+1) + 48*a(n+2) - 20*a(n+3)) + a(n+2)*(+4*a(n+2) + a(n+3)) for all n>=0. - Michael Somos, Nov 08 2015
a(n) = (-1)^n * Sum_{k=0..n} (-2)^k * binomial(n,k) * binomial(2*k+1,n) / (2*k+1). - Seiichi Manyama, Jul 24 2023

A011117 Triangle of numbers S(x,y) = number of lattice paths from (0,0) to (x,y) that use step set { (0,1), (1,0), (2,0), (3,0), ....} and never pass below y = x.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 11, 1, 4, 12, 28, 45, 1, 5, 18, 52, 121, 197, 1, 6, 25, 84, 237, 550, 903, 1, 7, 33, 125, 403, 1119, 2591, 4279, 1, 8, 42, 176, 630, 1976, 5424, 12536, 20793, 1, 9, 52, 238, 930, 3206, 9860, 26832, 61921, 103049, 1, 10, 63
Offset: 0

Views

Author

Robert Sulanke (sulanke(AT)diamond.idbsu.edu)

Keywords

Comments

When seen as polynomials with descending coefficients: evaluations are A006318 (x=1), A001003 (x=2).
Triangular array in A104219 transposed. - Philippe Deléham, Mar 16 2005
Triangle T(n,k), 0 <= k <= n, defined by: T(0,0) = 1, T(n,k) = T(n-1,k) + Sum_{j=0..k-1} 2^j*T(n-1,k-1-j). - Philippe Deléham, Oct 10 2005

Examples

			Triangle starts:
[0] [1]
[1] [1, 1]
[2] [1, 2,  3]
[3] [1, 3,  7,  11]
[4] [1, 4, 12,  28,  45]
[5] [1, 5, 18,  52, 121,  197]
[6] [1, 6, 25,  84, 237,  550,  903]
[7] [1, 7, 33, 125, 403, 1119, 2591,  4279]
[8] [1, 8, 42, 176, 630, 1976, 5424, 12536, 20793]
[9] [1, 9, 52, 238, 930, 3206, 9860, 26832, 61921, 103049]
		

Crossrefs

Cf. A084938.
Right-hand columns show convolutions of little Schroeder numbers with themselves: A001003, A010683, A010736, A010849.

Programs

  • Mathematica
    f[ x_, y_ ] := f[ x, y ] = Module[ {return}, If[ x == 0, return = 1, If[ y == x-1, return = 0, return = f[ x, y-1 ] + Sum[ f[ k, y ], {k, 0, x-1} ] ] ]; return ]; Do[ Print[ Table[ f[ k, j ], {k, 0, j} ] ], {j, 10, 0, -1} ]
  • Sage
    def A011117_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [prec(n, n-k) for k in (0..n-1)]
    for n in (1..9): print(A011117_row(n)) # Peter Luschny, Mar 16 2016

Formula

S(m, n) = ((n-m+1)/(n+1))*Sum_{i=0..m-1} 2^(m-i-1)*binomial(n+1, i+1)*binomial(m-1, i).
Another version of triangle [1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...] = 1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 11, 0, 1, 4, 12, 28, 45, 0, 1, ..., where DELTA is Deléham's operator defined in A084938.
G.f.: 2/(1 + uv - 2v + sqrt(1 - 6uv + u^2v^2)). - Emeric Deutsch, Dec 25 2003
Sum_{k = 0..n} T(n, k) = A006318(n), large Schroeder numbers. - Philippe Deléham, Jul 10 2004. (This is because T(n, k) = number of royal paths (A006318) of length n with exactly n-k Northeast steps lying on the line y=x. - David Callan, Aug 02 2004)
S(n,m) = ((n-m+1)/m)*Sum_{k=1..m} binomial(m,k)*binomial(n+k,k-1), n >= m > 1; S(n,0)=1; S(n,m)=0, n < m. See the corresponding formula for A104219. - Wolfdieter Lang, Mar 16 2009

A034015 Small 3-Schroeder numbers: a(n) = A027307(n+1)/2.

Original entry on oeis.org

1, 5, 33, 249, 2033, 17485, 156033, 1431281, 13412193, 127840085, 1235575201, 12080678505, 119276490193, 1187542872989, 11909326179841, 120191310803937, 1219780566014657, 12440630635406245, 127446349676475425, 1310820823328281561, 13530833791486094769
Offset: 0

Views

Author

Keywords

Comments

Series reversion of x*(Sum_{k>=0} a(k)(-x^2)^k) is Sum_{k odd} C(k)x^k where C() is Catalan numbers A000108.
Series reversion of x*(Sum_{k>=0} a(k)(-x)^k) is A000337(x). (Michael Somos)
This sequence should really have started with a(0)=1, a(1)=1, a(2)=5, a(3)=33, ..., but the present offset is too well-established. - N. J. A. Sloane, Mar 28 2021
This is the number of hypoplactic classes of 2-parking functions of size n+1. - Jun Yan, Apr 13 2024

References

  • Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.

Crossrefs

Part of a family indexed by m: m=2 (A001003), m=3 is this sequence, m=4 is A243675, ....
The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021
Apart from the first term, this is A027307/2. - N. J. A. Sloane, Mar 28 2021

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 4*n+1,
          ((110*n^3+66*n^2-17*n-9) *a(n-1)
           +(n-1)*(2*n-1)*(5*n+3) *a(n-2)) /
          ((2*n+3)*(5*n-2)*(n+1)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 22 2014
  • Mathematica
    a[n_] := If[n<0, 0, Sum[2^i*Binomial[2*n+2, i]*Binomial[n+1, i+1]/(n+1), {i, 0, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 13 2014, after PARI *)
    a[n_] := Hypergeometric2F1[-n, -2 (n + 1), 2, 2];
    Table[a[n], {n, 0, 20}]  (* Peter Luschny, Nov 08 2021 *)
  • PARI
    a(n)=if(n<0,0,sum(i=0,n,2^i*binomial(2*n+2,i)*binomial(n+1,i+1))/(n+1))

Formula

a(n) = Sum_{i=0..n} Sum_{j=0..i} (-2)^(n-i)*binomial(i,j)*binomial(2i+j, n)*binomial(n+1,i)/(n+1) (conjectured). - Michael D. Weiner, May 25 2017
Yang & Jiang (2021) give an explicit formula for a(n) in Theorems 2.4 and 2.9. - N. J. A. Sloane, Mar 28 2021 [This formula is: a(n) = (1/(n + 1)) * Sum_{k=1..n+1} binomial(2*n + 2, k - 1) * binomial(n + 1, k)*2^(k - 1). - Jun Yan, Apr 13 2024]
a(n) = hypergeom([-n, -2*(n + 1)], [2], 2). - Peter Luschny, Nov 08 2021
a(n) ~ phi^(5*n + 6) / (4 * 5^(1/4) * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Nov 08 2021
D-finite with recurrence +2*(2*n+3)*(n+1)*a(n) +(-46*n^2-43*n-9)*a(n-1) +3*(6*n^2-14*n+7)*a(n-2) +(2*n-3)*(n-2)*a(n-3)=0. - R. J. Mathar, Aug 01 2022
Let D(n) be the set of 2-Dyck paths that have n up-steps of size 2 and 2n down-steps of size 1 and never go below the x-axis. For every d in D(n), let peak(d) be the number of peaks in d. Then a(n) = Sum_{d in D(n+1)}2^(peak(d) - 1). - Jun Yan, Apr 13 2024
a(n) = (-1)^(n) * Jacobi_P(n, 1, n+2, -3)/(n+1). - Peter Bala, Sep 08 2024

A082298 Expansion of (1-3*x-sqrt(9*x^2-10*x+1))/(2*x).

Original entry on oeis.org

1, 4, 20, 116, 740, 5028, 35700, 261780, 1967300, 15072836, 117297620, 924612532, 7367204260, 59240277988, 480118631220, 3917880562644, 32163325863300, 265446382860420, 2201136740855700, 18329850024033012, 153225552507991140
Offset: 0

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

More generally coefficients of (1-m*x-sqrt(m^2*x^2-(2*m+4)*x+1))/(2*x) are given by a(0)=1 and, for n>0, a(n) = (1/n)*Sum_{k=0..n}(m+1)^k*binomial(n,k)*binomial(n,k-1).
a(n) = number of lattice paths from (0,0) to (n+1,n+1) that consist of steps (i,0) and (0,j) with i,j>=1 and that stay strictly below the diagonal line y=x except at the endpoints. (See Coker reference.) Equivalently, a(n) = number of marked Dyck (n+1)-paths where the vertices in the middle of each UU and each DD are available to be marked (or not): consider the original path as a Dyck path with a mark at each vertex where two horizontal (or two vertical) steps abut. If only the UU vertices are available for marking, then the counting sequence is the little Schroeder number A001003. - David Callan, Jun 07 2006
Hankel transform is 4^C(n+1,2). - Philippe Deléham, Feb 11 2009
a(n) is the number of Schroder paths of semilength n in which the (2,0)-steps come in 3 colors. Example: a(2)=20 because, denoting U=(1,1), H=(2,0), D=(1,-1), we have 3^2=9 paths of shape HH, 3 paths of shape HUD, 3 paths of shape UDH, 3 paths of shape UHD, and 1 path of each of the shapes UDUD, UUDD. - Emeric Deutsch, May 02 2011
(1 + 4x + 20x^2 + 116x^3 + ...) = (1 + 5x + 29x^2 + 185x^3 + ...) * 1/(1 + x + 5x^2 + 29x^3 +185x^4 + ...); where A059231 = (1, 5, 29, 185, 1257, ...) - Gary W. Adamson, Nov 17 2011
The first differences between the row sums of the triangle A226392. - J. M. Bergot, Jun 21 2013

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-3*x-Sqrt(9*x^2-10*x+1))/(2*x))); // G. C. Greubel, Feb 10 2018
  • Maple
    A082298_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 4*a[w-1]+add(a[j]*a[w-j-1], j=1..w-1) od;convert(a,list)end: A082298_list(20); # Peter Luschny, May 19 2011
    a := n -> `if`(n=0, 1, 4*hypergeom([1 - n, -n], [2], 4)):
    seq(simplify(a(n)), n=0..20); # Peter Luschny, May 22 2017
  • Mathematica
    gf[x_] = (1 - 3*x - Sqrt[(9*x^2 - 10*x + 1)])/(2*x); CoefficientList[Series[gf[x], {x, 0, 20}], x] (* Jean-François Alcover, Jun 01 2011 *)
  • PARI
    a(n)=if(n<1,1,sum(k=0,n,4^k*binomial(n,k)*binomial(n,k-1))/n)
    

Formula

a(0)=1, n>0 a(n) = (1/n)*Sum_{k=0..n} 4^k*binomial(n, k)*binomial(n, k-1).
a(1)=1, a(n) = 3*a(n-1) + Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
a(n) = Sum_{k=0..n} 1/(n+1) Binomial(n+1,k)Binomial(2n-k,n-k)3^k. - David Callan, Jun 07 2006
From Paul Barry, Feb 01 2009: (Start)
G.f.: 1/(1-3x-x/(1-3x-x/(1-3x-x/(1-... (continued fraction);
a(n) = Sum_{k=0..n} binomial(n+k,2k)*3^(n-k)*A000108(k). (End)
a(n) = Sum_{k=0..n} A060693(n,k)*3^k. - Philippe Deléham, Feb 11 2009
D-finite with recurrence: (n+1)*a(n) = 5*(2n-1)*a(n-1)-9*(n-2)*a(n-2). - Paul Barry, Oct 22 2009
G.f.: 1/(1- 4x/(1-x/(1-4x/(1-x/(1-4x/(1-... (continued fraction). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Dec 02 2009
G.f.: (1-3*x-sqrt(9*x^2-10*x+1))/(2*x) = (1-G(0))/x; G(k) = 1+x*3-x*4/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Jan 05 2012
a(n) ~ 3^(2*n+1)/(sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
a(n) = 4*hypergeom([1 - n, -n], [2], 4) for n>0. - Peter Luschny, May 22 2017
G.f. A(x) satisfies: A(x) = (1 + x*A(x)^2) / (1 - 3*x). - Ilya Gutkovskiy, Jun 30 2020
G.f.: (1+2*x*F(x))^2, where F(x) is the g.f. for A099250. - Alexander Burstein, May 11 2021

A111785 T(n,k) are coefficients used for power series inversion (sometimes called reversion), n >= 0, k = 1..A000041(n), read by rows.

Original entry on oeis.org

1, -1, -1, 2, -1, 5, -5, -1, 6, 3, -21, 14, -1, 7, 7, -28, -28, 84, -42, -1, 8, 8, 4, -36, -72, -12, 120, 180, -330, 132, -1, 9, 9, 9, -45, -90, -45, -45, 165, 495, 165, -495, -990, 1287, -429, -1, 10, 10, 10, 5, -55, -110, -110, -55, -55, 220, 660, 330, 660, 55, -715, -2860, -1430, 2002, 5005, -5005, 1430, -1, 11, 11
Offset: 0

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Comments

Coefficients are listed in Abramowitz and Stegun order (A036036).
The formula for the inversion of the power series y = F(x) = x*G(x) = x*(1 + Sum_{k>=1} g[k]*(x^k)) is obtained as a corollary of Lagrange's inversion theorem. The result is F^{(-1)}(y)= Sum_{n>=1} P(n-1)*y^n, where P(n):=sum over partitions of n of a(n,k)* G[k], with G[k]:=g[1]^e(k,1)*g[2]^e(k,2)*...*g[n]^e(k,n) if the k-th partition of n, in Abramowitz-Stegun order(see the given ref, pp. 831-2), is [1^e(k,1),2^e(k,2),...,n^e(k,n)], for k=1..p(n):= A000041(n) (partition numbers).
The sequence of row lengths is A000041(n) (partition numbers).
The signs are given by (-1)^m(n,k), with the number of parts m(n,k) = Sum_{j=1..n} e(k,j) of the k-th partition of n. For m(n,k) see A036043.
The proof that the unsigned row sums give Schroeder's little numbers A001003(n) results from their formula ((d^(n-1)/dx^(n-1)) ((1-x)/(1-2*x))^n)/n!|_{x=0}, n >= 1. This formula for A001003 can be proved starting with the compositional inverse of the g.f. of A001003 (which is given there in a comment) and using Lagrange's inversion theorem to recover the original sequence A001003.
For alternate formulations and relation to the geometry of associahedra or Stasheff polytopes (and other combinatorial objects) see A133437. [Tom Copeland, Sep 29 2008]
The coefficients of the row polynomials P(n) with monomials in lexicographically descending order e.g. P(6) = -1*g[6] + 8*g[5]*g[1] + 8*g[4]*g[2] - 36*g[4]*g[1]^2 + 4*g[3]^2 - 72*g[3]*g[2]*g[1] - 12*g[2]^3 + 120*g[3]*g[1]^3 + 180*g[2]^2*g[1]^2 - 330*g[2]*g[1]^4 + 132*g[1]^6 are given in A304462. [Herbert Eberle, Aug 16 2018]

Examples

			[ +1];
[ -1];
[ -1, 2];
[ -1, 5, -5];
[ -1, 6,  3, -21,  14];
[ -1, 7,  7, -28, -28, 84, -42];
[ -1, 8,  8,   4, -36, -72, -12, 120, 180, -330, 132];  ...
The seventh row, [ -1, 8, 8, 4, -36, -72, -12, 120, 180, -330, 132], stands for the row polynomial P(6) with monomials in lexicographically ascending order P(6) = -1*g[0]^5*g[6] + 8*g[0]^4*g[1]*g[5] + 8*g[0]^4*g[2]*g[4] + 4*g[0]^4*g[3]^2 - 36*g[0]^3*g[1]^2*g[4] - 72*g[0]^3*g[1]*g[2]*g[3] - 12*g[0]^3*g[2]^3 + 120*g[0]^2*g[1]^3*g[3] + 180*g[0]^2*g[1]^2*g[2]^2 - 330*g[0]*g[1]^4*g[2] + 132*g[1]^6 = (1/7!)*(differentiate 1/G(x)^7 six times and evaluate at x = 0). This gives the coefficient of y^7 of F^{(-1)}(y).
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 150, Table 4.1 (unsigned).

Crossrefs

Row sums give (-1)^n. Unsigned row sums are A001003(n) (little Schroeder numbers). Inversion triangle with leading quadratic term: A276738. Conjectured simplification: A283298.

Programs

  • Mathematica
    (* Graded Colex Ordering: by length, then reverse lexicographic by digit *)
    ClearAll[P, L, T, c, g]
    P[0] := 1
    P[n_] := -Total[
       Multinomial @@ # c[Total@# - 1] Times @@
           Power[g[#] & /@ Range[0, n - 1], #] & /@
        Table[ Count[p, i], {p, Drop[IntegerPartitions[n + 1], 1]}, {i,
          n}]]
    L[n_] := Join @@ GatherBy[IntegerPartitions[n], Length]
    T[1] := {1}
    T[n_] := Coefficient[ Do[g[i] = P[i], {i, 0, n - 1}];
        P[n - 1], #] & /@ (Times @@@ Map[c, L[n - 1], {2}])
    Array[T, 9] // Flatten (* Bradley Klee and Michael Somos, Apr 14 2017 *)
  • PARI
    sv(n)={eval(Str("'s",n))}
    Trm(q,v)={my(S=Set(v)); for(i=1, #S, my(x=S[i], c=#select(y->y==x, v)); q=polcoef(q, c, sv(x))); q}
    Q(n)={polcoef(serreverse(x + x*sum(k=1, n, x^k*sv(k), O(x*x^n)))/x, n)}
    row(n)={my(q=Q(n)); [Trm(q,Vec(v)) | v<-partitions(n)]} \\ Andrew Howroyd, Feb 01 2022
    
  • PARI
    C(v)={my(n=vecsum(v), S=Set(v)); (-1)^#v*(n+#v)!/(n+1)!/prod(i=1, #S, my(x=S[i], c=#select(y->y==x, v)); c!)}
    row(n)=[C(Vec(p)) | p<-partitions(n)]
    { for(n=0, 7, print(row(n))) } \\ Andrew Howroyd, Feb 01 2022
  • Sage
    def A111785_list(dim): # returns the first dim rows
        C = [[0 for k in range(m+1)] for m in range(dim+1)]
        C[0][0] = 1; F = [1]; i = 1
        X = lambda n: 1 if n == 1 else var('x'+str(n))
        while i <= dim: F.append(F[i-1]*X(i)); i += 1
        for m in (1..dim):
            C[m][m] = -C[m-1][m-1]/F[1]
            for k in range(m-1, 0, -1):
                C[m][k] = -(C[m-1][k-1]+sum(F[i]*C[m][k+i-1] for i in (2..m-k+1)))/F[1]
        P = [expand((-1)^m*C[m][1]) for m in (1..dim)]
        R = PolynomialRing(ZZ, [X(i) for i in (2..dim)], order='lex')
        return [R(p).coefficients()[::-1] for p in P]
    A111785_list(8) # Peter Luschny, Apr 14 2017
    

Formula

For row n >= 1 the row polynomial in the variables g[1], ..., g[n] is P(n) = (1/(n+1)!)*(d^n/dx^n)(1/G(x)^(n+1))|{x=0}. P(0):=1. (d^k/dx^k)G(x)|{x=0} = k!*g[k], k>=1; G(0)=1.
a(n, k) is the coefficient in P(n) of g[1]^e(k, 1)*g[2]^e(k, 2)*..*g[n]^e(k, n) with the k-th partition of n written as [1^e(k, 1), 2^e(k, 2), ..., n^e(k, n)] in Abramowitz-Stegun order (e(k, j) >= 0; if e(k, j)=0 then j^0 is not recorded).
T(n,k) = (-1)^j*(n+j)!/((n+1)!*Product_{i>=1} s_i!), where (1*s_1 + 2*s_2 + ... = n) is the k-th partition of n and j = s_1 + s_2 ... is the number of parts. - Andrew Howroyd, Feb 01 2022

Extensions

Name edited by Andrew Howroyd, Feb 02 2022

A181289 Triangle read by rows: T(n,k) is the number of 2-compositions of n having length k (0 <= k <= n).

Original entry on oeis.org

1, 0, 2, 0, 3, 4, 0, 4, 12, 8, 0, 5, 25, 36, 16, 0, 6, 44, 102, 96, 32, 0, 7, 70, 231, 344, 240, 64, 0, 8, 104, 456, 952, 1040, 576, 128, 0, 9, 147, 819, 2241, 3400, 2928, 1344, 256, 0, 10, 200, 1372, 4712, 9290, 11040, 7840, 3072, 512, 0, 11, 264, 2178, 9108, 22363
Offset: 0

Views

Author

Emeric Deutsch, Oct 12 2010

Keywords

Comments

A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n. The length of the 2-composition is the number of columns.
From Tom Copeland, Sep 06 2011: (Start)
R(t,z) = (1-z)^2 / ((1+t)*(1-z)^2-1) = 1/(t - (2*z + 3*z^2 + 4*z^3 + 5*z^4 + ...)) = 1/t + (1/t)^2*2*z + (1/t)^3*(4+3t)*z^2 + (1/t)^4*(8+12*t+4*t^2)*z^3 + ... gives row reversed polynomials of A181289 with G(t,z) = R(1/t,z)/t.
R(t,z) is related to generators for A033282 and A001003 (t=1) and can be umbrally extended to give a partition generator for A133437. (End)
A refined, reverse version of this array is given in A253722. - Tom Copeland, May 02 2015
The infinitesimal generator (infinigen) for the face polynomials of associahedra A086810/A033282, read as decreasing powers, (and for the dual simplicial complex read as increasing powers) can be formed from the row polynomials P(n,t) of this entry. This type of infinigen is presented in A145271 for general sets of binomial Sheffer polynomials. This specific infinigen is presented in analytic form in A086810. Given the column vector of row polynomials V = (P(0,t) = 1, P(1,y) = 2 t, P(2,y) = 3 t + 4 t^2, P(3,y) = 4 t + 12 t^2 + 8 t^3, ...), form the lower triangular matrix M(n,k) = V(n-k,n-k), i.e., diagonally multiply the matrix with all ones on the diagonal and below by the components of V. Form the matrix MD by multiplying A132440^Transpose = A218272 = D (representing derivation of o.g.f.s) by M, i.e., MD = M*D. The non-vanishing component of the first row of (MD)^n * V / (n+1)! is the n-th face polynomial. - Tom Copeland, Dec 11 2015
T is the convolution triangle of the positive integers starting at 2 (see A357368). - Peter Luschny, Oct 19 2022

Examples

			Triangle starts:
  1;
  0,  2;
  0,  3,   4;
  0,  4,  12,    8;
  0,  5,  25,   36,   16;
  0,  6,  44,  102,   96,    32;
  0,  7,  70,  231,  344,   240,    64;
  0,  8, 104,  456,  952,  1040,   576,   128;
  0,  9, 147,  819, 2241,  3400,  2928,  1344,   256;
  0, 10, 200, 1372, 4712,  9290, 11040,  7840,  3072,  512;
  0, 11, 264, 2178, 9108, 22363, 34332, 33488, 20224, 6912, 1024;
		

Crossrefs

Cf. A003480 (row sums), A181290.
Cf. A000297 (column 3), A006636 (column 4), A006637 (column 5).

Programs

  • Maple
    T := proc (n, k) if k <= n then sum((-1)^j*2^(k-j)*binomial(k, j)*binomial(n+k-j-1, 2*k-1), j = 0 .. k) else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> n + 1); # Peter Luschny, Oct 19 2022
  • Mathematica
    Table[Sum[(-1)^j*2^(k - j) Binomial[k, j] Binomial[n + k - j - 1, 2 k - 1], {j, 0, k}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 11 2015 *)
  • PARI
    T_xt(max_row) = {my(N=max_row+1, x='x+O('x^N), h=(1-x)^2/((1-x)^2 - t*x*(2-x))); vector(N, n, Vecrev(polcoeff(h, n-1)))}
    T_xt(10) \\ John Tyler Rascoe, Apr 05 2025

Formula

T(n,k) = Sum_{j=0..k} (-1)^j*2^(k-j)*binomial(k,j)*binomial(n+k-j-1, 2*k-1) (0 <= k <= n).
G.f.: G(t,x) = (1-x)^2/((1-x)^2 - t*x*(2-x)).
G.f. of column k = x^k*(2-x)^k/(1-x)^{2k} (k>=1) (we have a Riordan array).
Recurrences satisfied by the numbers u_{n,k}=T(n,k) can be found in the Castiglione et al. reference.
Sum_{k=0..n} k*T(n,k) = A181290(n).
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0)=1, T(1,0)=0, T(1,1)=2, T(2,0)=0, T(1,1)=3, T(2,2)=4, T(n,k)=0, if k < 0 or if k > n. - Philippe Deléham, Nov 29 2013

A317875 Number of achiral free pure multifunctions with n unlabeled leaves.

Original entry on oeis.org

1, 1, 3, 9, 30, 102, 369, 1362, 5181, 20064, 79035, 315366, 1272789, 5185080, 21296196, 88083993, 366584253, 1533953100, 6449904138, 27238006971, 115475933202, 491293053093, 2096930378415, 8976370298886, 38528771056425, 165784567505325
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Comments

An achiral free pure multifunction is either (case 1) the leaf symbol "o", or (case 2) a nonempty expression of the form h[g, ..., g], where h and g are both achiral free pure multifunctions.

Examples

			The first 4 terms count the following multifunctions.
o,
o[o],
o[o,o], o[o[o]], o[o][o],
o[o,o,o], o[o[o][o]], o[o[o[o]]], o[o[o,o]], o[o][o,o], o[o][o[o]], o[o][o][o], o[o,o][o], o[o[o]][o].
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n==1,1,Sum[a[n-k]*Sum[a[d],{d,Divisors[k]}],{k,n-1}]];
    Array[a,12]
  • PARI
    seq(n)={my(p=O(x)); for(n=1, n, p = x + p*(sum(k=1, n-1, subst(p + O(x^(n\k+1)), x, x^k)) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
    
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-1, v[i]*sumdiv(n-i, d, v[d]))); v} \\ Andrew Howroyd, Aug 19 2018

Formula

a(1) = 1; a(n > 1) = Sum_{0 < k < n} a(n - k) * Sum_{d|k} a(d).
From Ilya Gutkovskiy, Apr 30 2019: (Start)
G.f. A(x) satisfies: A(x) = x + A(x) * Sum_{k>=1} A(x^k).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x + (Sum_{n>=1} a(n)*x^n) * (Sum_{n>=1} a(n)*x^n/(1 - x^n)). (End)

A078009 a(0)=1, for n>=1 a(n) = Sum_{k=0..n} 5^k*N(n,k) where N(n,k) = C(n,k)*C(n,k+1)/n are the Narayana numbers (A001263).

Original entry on oeis.org

1, 1, 6, 41, 306, 2426, 20076, 171481, 1500666, 13386206, 121267476, 1112674026, 10318939956, 96572168916, 910896992856, 8650566601401, 82644968321226, 793753763514806, 7659535707782916, 74225795172589006, 722042370787826076
Offset: 0

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

More generally coefficients of (1 + m*x - sqrt(m^2*x^2 - (2*m+2)*x + 1) )/( 2*m*x ) are given by a(n) = Sum_{k=0..n} (m+1)^k * N(n,k).
a(n) is the series reversion of x*(1-5*x)/(1-4*x). a(n+1) is the series reversion of x/(1 + 6*x + 5*x^2). a(n+1) counts (6,5)-Motzkin paths of length n, where there are 6 colors available for the H(1,0) steps and 5 for the U(1,1) steps. - Paul Barry, May 19 2005
The Hankel transform of this sequence is 5^C(n+1,2). - Philippe Deléham, Oct 29 2007
a(n) is the number of Schröder paths of semilength n in which there are no (2,0)-steps at level 0 and at a higher level they come in 4 colors. Example: a(2)=6 because we have UDUD, UUDD, UBD, UGD, URD, and UYD, where U=(1,1), D=(1,-1), while B, G, R, and Y are, respectively, blue, green, red, and yellow (2,0)-steps. - Emeric Deutsch, May 02 2011
Shifts left when INVERT transform applied five times. - Benedict W. J. Irwin, Feb 03 2016

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1+4*x - Sqrt(16*x^2-12*x+1))/(10*x) )); // G. C. Greubel, Jun 28 2019
    
  • Magma
    [1] cat [&+[5^k*Binomial(n,k)*Binomial(n,k+1)/n:k in [0..n]]:n in [1..20]]; // Marius A. Burtea, Jan 21 2020
    
  • Maple
    A078009_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1]+5*add(a[j]*a[w-j-1],j=1..w-1) od;
    convert(a, list) end: A078009_list(20); # Peter Luschny, May 19 2011
  • Mathematica
    Table[SeriesCoefficient[(1+4*x-Sqrt[16*x^2-12*x+1])/(10*x),{x,0,n}],{n,0,30}] (* Vaclav Kotesovec, Oct 13 2012 *)
    a[n_] := Hypergeometric2F1[1 - n, -n, 2, 5];
    Table[a[n], {n, 0, 30}] (* Peter Luschny, Mar 19 2018 *)
  • PARI
    a(n)=sum(k=0,n,5^k/n*binomial(n,k)*binomial(n,k+1))
    
  • Sage
    a=((1+4*x -sqrt(16*x^2-12*x+1))/(10*x)).series(x, 30).coefficients(x, sparse=False); [1]+a[1:] # G. C. Greubel, Jun 28 2019

Formula

G.f.: (1 + 4*x - sqrt(16*x^2 - 12*x + 1))/(10*x).
a(n) = Sum_{k=0..n} A088617(n, k)*5^k*(-4)^(n-k). - Philippe Deléham, Jan 21 2004
With offset 1 : a(1)=1, a(n) = -4*a(n-1) + 5*Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
a(n+1) = Sum_{k=0..floor(n/2)} C(n, 2*k)*C(k)*6^(n-2k)*5^k; - Paul Barry, May 19 2005
a(n) = ( 6*(2*n-1)*a(n-1) - 16*(n-2)*a(n-2) ) / (n+1) for n >= 2, a(0) = a(1) = 1. - Philippe Deléham, Aug 19 2005
From Gary W. Adamson, Jul 08 2011: (Start)
a(n) = upper left term in M^n, M = the production matrix:
1, 1
5, 5, 5
1, 1, 1, 1
5, 5, 5, 5, 5
1, 1, 1, 1, 1, 1
... (End)
a(n) ~ sqrt(10+6*sqrt(5))*(6+2*sqrt(5))^n/(10*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 13 2012. Equivalently, a(n) ~ 2^(2*n) * phi^(2*n + 1) / (5^(3/4) * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
a(n) = A127848(n) for n > 0. - Philippe Deléham, Apr 03 2013
G.f.: 1/(1 - x/(1 - 5*x/(1 - x/(1 - 5*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Apr 21 2017
a(n) = hypergeom([1 - n, -n], [2], 5). - Peter Luschny, Mar 19 2018

A364748 G.f. A(x) satisfies A(x) = 1 + x*A(x)^5 / (1 - x*A(x)).

Original entry on oeis.org

1, 1, 6, 47, 424, 4159, 43097, 464197, 5145475, 58313310, 672598269, 7869856070, 93183973405, 1114471042413, 13443614108307, 163372291277764, 1998239045199623, 24580340878055298, 303893356012560280, 3774099648814193998, 47061518776483143441
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(5*n-4*k, n-1-k))/n);
    
  • PARI
    a(n, r=1, s=1, t=5, u=1) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 05 2024

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(5*n-4*k,n-1-k) for n > 0.
From Seiichi Manyama, Dec 05 2024: (Start)
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^4/(1 - x*A(x))).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r). (End)

A006241 Number of minimal plane trees with n terminal nodes.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 6, 2, 3, 1, 20, 1, 3, 3, 54, 1, 34, 1, 44, 3, 3, 1, 764, 2, 3, 10, 140, 1, 283, 1, 4470, 3, 3, 3, 10416, 1, 3, 3, 10820, 1, 2227, 1, 2060, 62, 3, 1, 958476, 2, 250, 3, 8204, 1, 59154, 3, 316004, 3, 3, 1, 3457904, 1, 3, 158, 30229110, 3
Offset: 1

Views

Author

Keywords

Comments

In equation (4.4) Lew says a(p^3) = 3+3^p, but this is incorrect, it should be a(p^3) = 2+2^p. - Sean A. Irvine, Feb 07 2017
From Gus Wiseman, Jan 15 2017: (Start)
Number of same-trees of weight n with all leaves equal to 1. A same-tree is either: (case 1) a positive integer, or (case 2) a finite sequence of two or more same-trees all having the same weight, where the weight in case 2 is the sum of weights.
For n>1, a(n) is also equal to the number of same-trees of weight n with all leaves greater than 1 (see example). (End)

Examples

			The a(12)=20 same-trees with all leaves greater than 1 are:
12, (3333), (222222), ((33)(33)), ((33)(222)), ((33)6), ((222)(33)), ((222)(222)), ((222)6), (6(33)), (6(222)), (66), ((22)(22)(22)), ((22)(22)4), ((22)4(22)), ((22)44), (4(22)(22)), (4(22)4), (44(22)), (444). - _Gus Wiseman_, Jan 15 2017
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1, add(
          a(n/d)^d, d=numtheory[divisors](n) minus {1}))
        end:
    seq(a(n), n=1..70);  # Alois P. Heinz, Feb 21 2017
  • Mathematica
    Array[If[#1===1,1,Sum[#0[#1/d]^d,{d,Rest[Divisors[#1]]}]]&,200] (* Gus Wiseman, Jan 15 2017 *)

Formula

a(1)=a(2)=a(3)=a(5)=a(7)=1, a(4)=2, a(6)=3, a(n) = Sum_{1 != d | n} a(n / d)^d [From Lew]. - Sean A. Irvine, Feb 07 2017 [typo corrected by Ilya Gutkovskiy, Apr 24 2019]

Extensions

a(8), a(27), and a(50) corrected by Sean A. Irvine, Feb 07 2017
Previous Showing 61-70 of 248 results. Next