A033583
a(n) = 10*n^2.
Original entry on oeis.org
0, 10, 40, 90, 160, 250, 360, 490, 640, 810, 1000, 1210, 1440, 1690, 1960, 2250, 2560, 2890, 3240, 3610, 4000, 4410, 4840, 5290, 5760, 6250, 6760, 7290, 7840, 8410, 9000, 9610, 10240, 10890, 11560, 12250, 12960, 13690, 14440, 15210, 16000, 16810
Offset: 0
A049451
Twice second pentagonal numbers.
Original entry on oeis.org
0, 4, 14, 30, 52, 80, 114, 154, 200, 252, 310, 374, 444, 520, 602, 690, 784, 884, 990, 1102, 1220, 1344, 1474, 1610, 1752, 1900, 2054, 2214, 2380, 2552, 2730, 2914, 3104, 3300, 3502, 3710, 3924, 4144, 4370, 4602, 4840, 5084, 5334, 5590, 5852, 6120, 6394, 6674, 6960, 7252, 7550, 7854
Offset: 0
Joe Keane (jgk(AT)jgk.org)
From _Dmitry Kamenetsky_, Dec 14 2008, with slight rewording by Raymond Martineau (mart0258(AT)yahoo.com), Dec 16 2008: (Start)
For an N x N Minesweeper grid the highest sum of numbers is (N-1)(3*N-2). This is achieved by filling every second row with mines (shown as 'X'). For example, when N=5 the best grids are:
.
X X X X X
4 6 6 6 4
X X X X X
4 6 6 6 4
X X X X X
.
and
.
2 3 3 3 2
X X X X X
4 6 6 6 4
X X X X X
2 3 3 3 2
.
each giving a total of 52. (End)
- L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 12.
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Raghavendra N. Bhat, Cristian Cobeli, and Alexandru Zaharescu, A lozenge triangulation of the plane with integers, arXiv:2403.10500 [math.NT], 2024.
- Kival Ngaokrajang, Illustration of 3 points circle center spiral.
- Leo Tavares, Illustration: Double Hexagonal Trapezoids.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Similar sequences are listed in
A316466.
-
List([0..55], n-> n*(3*n+1)); # G. C. Greubel, Sep 01 2019
-
a049451 n = n * (3 * n + 1) -- Reinhard Zumkeller, Jul 07 2012
-
[n*(3*n+1): n in [0..55]]; // G. C. Greubel, Sep 01 2019
-
Table[n(3n+1), {n,0,55}] (* or *) CoefficientList[Series[2x(2+x)/(1-x)^3, {x,0,55}], x] (* Michael De Vlieger, Apr 05 2017 *)
-
a(n)=n*(3*n+1) \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(3*n+1) for n in range(60)] # Gennady Eremin, Feb 27 2022
-
[n*(3*n+1) for n in (0..55)] # G. C. Greubel, Sep 01 2019
A049452
Pentagonal numbers with even index.
Original entry on oeis.org
0, 5, 22, 51, 92, 145, 210, 287, 376, 477, 590, 715, 852, 1001, 1162, 1335, 1520, 1717, 1926, 2147, 2380, 2625, 2882, 3151, 3432, 3725, 4030, 4347, 4676, 5017, 5370, 5735, 6112, 6501, 6902, 7315, 7740, 8177, 8626, 9087, 9560, 10045, 10542
Offset: 0
Joe Keane (jgk(AT)jgk.org)
See index to sequences with numbers of the form n*(d*n+10-d)/2 in
A140090.
-
seq(n*(6*n-1),n=0..42); # Zerinvary Lajos, Jun 12 2007
-
Table[n(6n-1),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,5,22},50] (* Harvey P. Dale, Mar 07 2012 *)
-
a(n)=n*(6*n-1) \\ Charles R Greathouse IV, Sep 24 2015
A142463
a(n) = 2*n^2 + 2*n - 1.
Original entry on oeis.org
-1, 3, 11, 23, 39, 59, 83, 111, 143, 179, 219, 263, 311, 363, 419, 479, 543, 611, 683, 759, 839, 923, 1011, 1103, 1199, 1299, 1403, 1511, 1623, 1739, 1859, 1983, 2111, 2243, 2379, 2519, 2663, 2811, 2963, 3119, 3279, 3443, 3611, 3783, 3959, 4139, 4323, 4511, 4703, 4899, 5099
Offset: 0
-
[2*n^2+2*n-1: n in [0..100]];
-
A142463:= n-> 2*n^2 +2*n -1; seq(A142463(n), n=0..50); # G. C. Greubel, Mar 01 2021
-
Array[ -#*(2-#*2)-1&,5!,1] (* Vladimir Joseph Stephan Orlovsky, Dec 21 2008 *)
Table[2n^2+2n-1,{n,0,50}] (* Harvey P. Dale, Feb 29 2024 *)
-
a(n)=2*n^2+2*n-1 \\ Charles R Greathouse IV, Sep 24 2015
-
[2*n^2 +2*n -1 for n in (0..50)] # G. C. Greubel, Mar 01 2021
Edited by the Associate Editors of the OEIS, Sep 02 2009
A345910
Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum -1.
Original entry on oeis.org
6, 20, 25, 27, 30, 72, 81, 83, 86, 92, 98, 101, 103, 106, 109, 111, 116, 121, 123, 126, 272, 289, 291, 294, 300, 312, 322, 325, 327, 330, 333, 335, 340, 345, 347, 350, 360, 369, 371, 374, 380, 388, 393, 395, 398, 402, 405, 407, 410, 413, 415, 420, 425, 427
Offset: 1
The sequence of terms together with the corresponding compositions begins:
6: (1,2)
20: (2,3)
25: (1,3,1)
27: (1,2,1,1)
30: (1,1,1,2)
72: (3,4)
81: (2,4,1)
83: (2,3,1,1)
86: (2,2,1,2)
92: (2,1,1,3)
98: (1,4,2)
101: (1,3,2,1)
103: (1,3,1,1,1)
106: (1,2,2,2)
109: (1,2,1,2,1)
These compositions are counted by
A001791.
A version using runs of binary digits is
A031444.
These are the positions of -1's in
A124754.
The opposite (positive 1) version is
A345909.
The version for alternating sum of prime indices is
A345959.
A000041 counts partitions of 2n with alternating sum 0, ranked by
A000290.
A000070 counts partitions of 2n+1 with alternating sum 1, ranked by
A001105.
A097805 counts compositions by sum and alternating sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
Cf.
A000097,
A000346,
A008549,
A025047,
A027187,
A031443,
A031448,
A114121,
A119899,
A126869,
A238279,
A344617.
-
stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
Select[Range[0,100],ats[stc[#]]==-1&]
A345912
Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum -1.
Original entry on oeis.org
5, 18, 23, 25, 29, 68, 75, 78, 81, 85, 90, 95, 98, 103, 105, 109, 114, 119, 121, 125, 264, 275, 278, 284, 289, 293, 298, 303, 308, 315, 318, 322, 327, 329, 333, 338, 343, 345, 349, 356, 363, 366, 369, 373, 378, 383, 388, 395, 398, 401, 405, 410, 415, 418, 423
Offset: 1
The sequence of terms together with the corresponding compositions begins:
5: (2,1)
18: (3,2)
23: (2,1,1,1)
25: (1,3,1)
29: (1,1,2,1)
68: (4,3)
75: (3,2,1,1)
78: (3,1,1,2)
81: (2,4,1)
85: (2,2,2,1)
90: (2,1,2,2)
95: (2,1,1,1,1,1)
98: (1,4,2)
103: (1,3,1,1,1)
105: (1,2,3,1)
These compositions are counted by
A001791.
These are the positions of -1's in
A344618.
The non-reverse version is
A345910.
The opposite (positive 1) version is
A345911.
The version for Heinz numbers of partitions is
A345959.
A000041 counts partitions of 2n with alternating sum 0, ranked by
A000290.
A097805 counts compositions by alternating or reverse-alternating sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
Cf.
A000070,
A000346,
A001105,
A008549,
A025047,
A031444,
A034871,
A114121,
A126869,
A344608,
A345958,
A345959.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
Select[Range[0,100],sats[stc[#]]==-1&]
A056106
Second spoke of a hexagonal spiral.
Original entry on oeis.org
1, 3, 11, 25, 45, 71, 103, 141, 185, 235, 291, 353, 421, 495, 575, 661, 753, 851, 955, 1065, 1181, 1303, 1431, 1565, 1705, 1851, 2003, 2161, 2325, 2495, 2671, 2853, 3041, 3235, 3435, 3641, 3853, 4071, 4295, 4525, 4761, 5003, 5251, 5505, 5765, 6031, 6303
Offset: 0
-
a056106 n = n * (3 * n - 1) + 1 -- Reinhard Zumkeller, Dec 13 2014
-
I:=[1,3]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+6: n in [1..50]]; // Vincenzo Librandi, Nov 14 2011
-
Table[3*n^2 - n + 1, {n,0,50}] (* G. C. Greubel, Jul 19 2017 *)
-
a(n) = 3*n^2-n+1;
A345911
Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum 1.
Original entry on oeis.org
1, 6, 7, 20, 21, 26, 27, 30, 31, 72, 73, 82, 83, 86, 87, 92, 93, 100, 101, 106, 107, 110, 111, 116, 117, 122, 123, 126, 127, 272, 273, 290, 291, 294, 295, 300, 301, 312, 313, 324, 325, 330, 331, 334, 335, 340, 341, 346, 347, 350, 351, 360, 361, 370, 371, 374
Offset: 1
The sequence of terms together with the corresponding compositions begins:
1: (1)
6: (1,2)
7: (1,1,1)
20: (2,3)
21: (2,2,1)
26: (1,2,2)
27: (1,2,1,1)
30: (1,1,1,2)
31: (1,1,1,1,1)
72: (3,4)
73: (3,3,1)
82: (2,3,2)
83: (2,3,1,1)
86: (2,2,1,2)
87: (2,2,1,1,1)
The version for Heinz numbers of partitions is
A001105.
A version using runs of binary digits is
A066879.
These are positions of 1's in
A344618.
The non-reverse version is
A345909.
The opposite (negative 1) version is
A345912.
The version for prime indices is
A345958.
A000041 counts partitions of 2n with alternating sum 0, ranked by
A000290.
A097805 counts compositions by alternating or reverse-alternating sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
Cf.
A000070,
A000097,
A000346,
A008549,
A025047,
A027193,
A031448,
A034871,
A114121,
A120452,
A344607.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
Select[Range[0,100],sats[stc[#]]==1&]
A093005
a(n) = n * ceiling(n/2).
Original entry on oeis.org
1, 2, 6, 8, 15, 18, 28, 32, 45, 50, 66, 72, 91, 98, 120, 128, 153, 162, 190, 200, 231, 242, 276, 288, 325, 338, 378, 392, 435, 450, 496, 512, 561, 578, 630, 648, 703, 722, 780, 800, 861, 882, 946, 968, 1035, 1058, 1128, 1152, 1225, 1250, 1326, 1352, 1431, 1458
Offset: 1
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Torleiv Kløve, Linear recurring sequences in boolean rings, Math. Scand., 33 (1973), 5-12.
- Torleiv Kløve, Linear recurring sequences in boolean rings, Math. Scand., 33 (1973), 5-12. (Annotated scanned copy)
- Luc Rousseau, Illustration, a(n) viewed as a number of regions in an arrangement of lines / of circles.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
-
[n*(n+(n mod 2))/2: n in [1..70]]; // G. C. Greubel, Mar 14 2024
-
A093005:=n->n*ceil(n/2); seq(A093005(n), n=1..100); # Wesley Ivan Hurt, Nov 14 2013
-
a[n_Integer] := n*Floor[(n + 1)/2] (* Olivier Gérard, Jun 21 2007 *)
Table[n*Ceiling[n/2],{n,60}] (* or *) LinearRecurrence[{1,2,-2,-1,1},{1,2,6,8,15},60] (* Harvey P. Dale, May 08 2014 *)
-
a(n)=(n+1)\2*n \\ Charles R Greathouse IV, Jun 11 2015
-
for n in range(1,55):
print(n*((n+1)//2), end=",") # Alex Ratushnyak, Apr 26 2012
-
[n*(n +(n%2))/2 for n in range(1,71)] # G. C. Greubel, Mar 14 2024
Original entry on oeis.org
0, 8, 32, 72, 128, 200, 288, 392, 512, 648, 800, 968, 1152, 1352, 1568, 1800, 2048, 2312, 2592, 2888, 3200, 3528, 3872, 4232, 4608, 5000, 5408, 5832, 6272, 6728, 7200, 7688, 8192, 8712, 9248, 9800, 10368, 10952, 11552, 12168, 12800, 13448, 14112, 14792, 15488, 16200
Offset: 0
-
[8*n^2: n in [0..50]]; // Vincenzo Librandi, Apr 26 2011
-
A139098:=n->8*n^2; seq(A139098(n), n=0..50); # Wesley Ivan Hurt, Jun 19 2014
-
8 Range[0, 50]^2 (* Wesley Ivan Hurt, Jun 19 2014 *)
LinearRecurrence[{3,-3,1},{0,8,32},50] (* Harvey P. Dale, Oct 05 2023 *)
-
a(n)=8*n^2 \\ Charles R Greathouse IV, Jun 17 2017
Comments