A294964 Numerators of the partial sums of the reciprocals of the positive numbers (k + 1)*(6*k + 5) = A049452(k+1).
1, 27, 1487, 71207, 423323, 5021921, 208393341, 19767960169, 9496615779853, 112702096556215, 7360072449683999, 524616965933727859, 526363371877036219, 43813027890740553917, 781806518388353706041, 148866078528885256002173, 15064339628673236669081953, 538212602352090865654383697
Offset: 0
Examples
The rationals V(6,5;n), n >= 0, begin: 1/5, 27/110, 1487/5610, 71207/258060, 423323/1496748, 5021921/17462060, 208393341/715944460, 19767960169/67298779240, 9496615779853/32101517697480, ... V(6,5;10^6) = 0.313513577 (Maple, 10 digits) to be compared with the rounded ten digits 0.3135137478 obtained from V(6,5) given in A294966.
References
- Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.
Links
- Robert Israel, Table of n, a(n) for n = 0..640
- Eric Weisstein's World of Mathematics, Digamma Function
Programs
-
Magma
[Numerator((&+[1/((k+1)*(6*k+5)): k in [0..n]])): n in [0..25]]; // G. C. Greubel, Aug 29 2018
-
Maple
map(numer, ListTools:-PartialSums([seq(1/(k+1)/(6*k+5),k=0..20)])); # Robert Israel, Nov 29 2017
-
Mathematica
Table[Numerator[Sum[1/((k+1)*(6*k+5)), {k,0,n}]], {n,0,25}] (* G. C. Greubel, Aug 29 2018 *)
-
PARI
a(n) = numerator(sum(k=0, n, 1/((k + 1)*(6*k + 5)))); \\ Michel Marcus, Nov 27 2017
Comments