A144555
a(n) = 14*n^2.
Original entry on oeis.org
0, 14, 56, 126, 224, 350, 504, 686, 896, 1134, 1400, 1694, 2016, 2366, 2744, 3150, 3584, 4046, 4536, 5054, 5600, 6174, 6776, 7406, 8064, 8750, 9464, 10206, 10976, 11774, 12600, 13454, 14336, 15246, 16184, 17150, 18144, 19166, 20216, 21294, 22400, 23534, 24696
Offset: 0
A226488
a(n) = n*(13*n - 9)/2.
Original entry on oeis.org
0, 2, 17, 45, 86, 140, 207, 287, 380, 486, 605, 737, 882, 1040, 1211, 1395, 1592, 1802, 2025, 2261, 2510, 2772, 3047, 3335, 3636, 3950, 4277, 4617, 4970, 5336, 5715, 6107, 6512, 6930, 7361, 7805, 8262, 8732, 9215, 9711, 10220, 10742, 11277, 11825, 12386, 12960
Offset: 0
Cf. numbers of the form n*(n*k-k+4)/2 listed in
A005843 (k=0),
A000096 (k=1),
A002378 (k=2),
A005449 (k=3),
A001105 (k=4),
A005476 (k=5),
A049450 (k=6),
A218471 (k=7),
A002939 (k=8),
A062708 (k=9),
A135706 (k=10),
A180223 (k=11),
A139267 (n=12), this sequence (k=13),
A139268 (k=14),
A226489 (k=15),
A139271 (k=16),
A180232 (k=17),
A152995 (k=18),
A226490 (k=19),
A152965 (k=20),
A226491 (k=21),
A152997 (k=22).
-
List([0..50], n-> n*(13*n-9)/2); # G. C. Greubel, Aug 30 2019
-
[n*(13*n-9)/2: n in [0..50]];
-
I:=[0,2,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
-
A226488:=n->n*(13*n - 9)/2; seq(A226488(n), n=0..50); # Wesley Ivan Hurt, Feb 25 2014
-
Table[n(13n-9)/2, {n, 0, 50}]
LinearRecurrence[{3, -3, 1}, {0, 2, 17}, 50] (* Harvey P. Dale, Jun 19 2013 *)
CoefficientList[Series[x(2+11x)/(1-x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
a(n)=n*(13*n-9)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(13*n-9)/2 for n in (0..50)] # G. C. Greubel, Aug 30 2019
A347457
Heinz numbers of integer partitions with integer alternating product.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 78
Offset: 1
The prime indices of 525 are {2,3,3,4}, with reverse-alternating product 2, so 525 is in the sequence
The prime indices of 135 are {2,2,2,3}, with reverse-alternating product 3/2, so 135 is not in the sequence.
Factorizations of this type are counted by
A347437.
These partitions are counted by
A347446.
The reverse reciprocal version
A347451.
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A335433 lists numbers whose prime indices are separable, complement
A335448.
A347461 counts possible alternating products of partitions, reverse
A347462.
Cf.
A001105,
A001222,
A028260,
A119620,
A119899,
A316523,
A344606,
A344617,
A346703,
A346704,
A347448,
A347450.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
Select[Range[100],IntegerQ[altprod[Reverse[primeMS[#]]]]&]
A185787
Sum of first k numbers in column k of the natural number array A000027; by antidiagonals.
Original entry on oeis.org
1, 7, 25, 62, 125, 221, 357, 540, 777, 1075, 1441, 1882, 2405, 3017, 3725, 4536, 5457, 6495, 7657, 8950, 10381, 11957, 13685, 15572, 17625, 19851, 22257, 24850, 27637, 30625, 33821, 37232, 40865, 44727, 48825, 53166, 57757, 62605, 67717, 73100, 78761, 84707, 90945, 97482, 104325, 111481, 118957, 126760, 134897, 143375
Offset: 1
-
[n*(7*n^2-6*n+5)/6: n in [1..50]]; // Vincenzo Librandi, Jul 04 2012
-
f[n_,k_]:=n+(n+k-2)(n+k-1)/2;
s[k_]:=Sum[f[n,k],{n,1,k}];
Factor[s[k]]
Table[s[k],{k,1,70}] (* A185787 *)
CoefficientList[Series[(3*x^2+3*x+1)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Jul 04 2012 *)
A135453
a(n) = 12*n^2.
Original entry on oeis.org
0, 12, 48, 108, 192, 300, 432, 588, 768, 972, 1200, 1452, 1728, 2028, 2352, 2700, 3072, 3468, 3888, 4332, 4800, 5292, 5808, 6348, 6912, 7500, 8112, 8748, 9408, 10092, 10800, 11532, 12288, 13068, 13872, 14700, 15552, 16428, 17328, 18252, 19200, 20172, 21168, 22188
Offset: 0
192 is on the list since 16*12 is a 4:3 rectangle with integer sides and an area of 192.
-
List([0..100],n->12*n^2); # Muniru A Asiru, Jan 29 2018
-
seq(12*h^2,n=0..100); # Muniru A Asiru, Jan 29 2018
-
Table[12*n^2, {n, 0, 60}] (* Stefan Steinerberger, Dec 17 2007 *)
LinearRecurrence[{3,-3,1},{0,12,48},50] (* Harvey P. Dale, Jan 19 2020 *)
-
a(n)=12*n^2 \\ Charles R Greathouse IV, Jun 17 2017
A139570
a(n) = 2*n*(n+3).
Original entry on oeis.org
0, 8, 20, 36, 56, 80, 108, 140, 176, 216, 260, 308, 360, 416, 476, 540, 608, 680, 756, 836, 920, 1008, 1100, 1196, 1296, 1400, 1508, 1620, 1736, 1856, 1980, 2108, 2240, 2376, 2516, 2660, 2808, 2960, 3116, 3276, 3440, 3608, 3780, 3956, 4136, 4320, 4508, 4700, 4896
Offset: 0
A347450
Numbers whose multiset of prime indices has alternating product <= 1.
Original entry on oeis.org
1, 2, 4, 6, 8, 9, 10, 14, 15, 16, 18, 21, 22, 24, 25, 26, 32, 33, 34, 35, 36, 38, 39, 40, 46, 49, 50, 51, 54, 55, 56, 57, 58, 60, 62, 64, 65, 69, 72, 74, 77, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 100, 104, 106, 111, 115, 118, 119, 121, 122
Offset: 1
The initial terms and their prime indices:
1: {} 26: {1,6} 56: {1,1,1,4}
2: {1} 32: {1,1,1,1,1} 57: {2,8}
4: {1,1} 33: {2,5} 58: {1,10}
6: {1,2} 34: {1,7} 60: {1,1,2,3}
8: {1,1,1} 35: {3,4} 62: {1,11}
9: {2,2} 36: {1,1,2,2} 64: {1,1,1,1,1,1}
10: {1,3} 38: {1,8} 65: {3,6}
14: {1,4} 39: {2,6} 69: {2,9}
15: {2,3} 40: {1,1,1,3} 72: {1,1,1,2,2}
16: {1,1,1,1} 46: {1,9} 74: {1,12}
18: {1,2,2} 49: {4,4} 77: {4,5}
21: {2,4} 50: {1,3,3} 81: {2,2,2,2}
22: {1,5} 51: {2,7} 82: {1,13}
24: {1,1,1,2} 54: {1,2,2,2} 84: {1,1,2,4}
25: {3,3} 55: {3,5} 85: {3,7}
The additive version (alternating sum <= 0) is
A028260.
Allowing any alternating product < 1 gives
A119899.
Factorizations of this type are counted by
A339846, complement
A339890.
Allowing any alternating product >= 1 gives
A344609, multiplicative
A347456.
Partitions of this type are counted by
A347443.
Allowing any integer alternating product gives
A347454, reciprocal
A347451.
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A335433 lists numbers whose prime indices are separable, complement
A335448.
A344606 counts alternating permutations of prime indices.
A347457 lists Heinz numbers of partitions with integer alternating product.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
Select[Range[100],altprod[primeMS[#]]<=1&]
A347454
Numbers whose multiset of prime indices has integer alternating product.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 25, 27, 28, 29, 31, 32, 36, 37, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 108, 109, 112, 113
Offset: 1
The terms and their prime indices begin:
1: {} 20: {1,1,3} 47: {15}
2: {1} 23: {9} 48: {1,1,1,1,2}
3: {2} 25: {3,3} 49: {4,4}
4: {1,1} 27: {2,2,2} 50: {1,3,3}
5: {3} 28: {1,1,4} 52: {1,1,6}
7: {4} 29: {10} 53: {16}
8: {1,1,1} 31: {11} 59: {17}
9: {2,2} 32: {1,1,1,1,1} 61: {18}
11: {5} 36: {1,1,2,2} 63: {2,2,4}
12: {1,1,2} 37: {12} 64: {1,1,1,1,1,1}
13: {6} 41: {13} 67: {19}
16: {1,1,1,1} 42: {1,2,4} 68: {1,1,7}
17: {7} 43: {14} 71: {20}
18: {1,2,2} 44: {1,1,5} 72: {1,1,1,2,2}
19: {8} 45: {2,2,3} 73: {21}
Allowing any alternating product >= 1 gives
A344609, multiplicative
A347456.
Factorizations of this type are counted by
A347437.
Allowing any alternating product <= 1 gives
A347450.
The version for reversed prime indices is
A347457, complement
A347455.
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A335433 lists numbers whose prime indices are separable, complement
A335448.
A344606 counts alternating permutations of prime indices.
A347461 counts possible alternating products of partitions.
A347462 counts possible reverse-alternating products of partitions.
Cf.
A001105,
A001222,
A028982,
A119620,
A236913,
A316523,
A344653,
A346703,
A346704,
A347443,
A347439.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
Select[Range[100],IntegerQ[altprod[primeMS[#]]]&]
A093328
a(n) = 2*n^2 + 3.
Original entry on oeis.org
3, 5, 11, 21, 35, 53, 75, 101, 131, 165, 203, 245, 291, 341, 395, 453, 515, 581, 651, 725, 803, 885, 971, 1061, 1155, 1253, 1355, 1461, 1571, 1685, 1803, 1925, 2051, 2181, 2315, 2453, 2595, 2741, 2891, 3045, 3203, 3365, 3531, 3701, 3875, 4053, 4235, 4421, 4611
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Steven Edwards and William Griffiths, Generalizations of Delannoy and cross polytope numbers, Fib. Q., Vol. 55, No. 4 (2017), pp. 356-366.
- Steven Edwards and William Griffiths, On Generalized Delannoy Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.3.6.
- Eric S. Egge and Toufik Mansour, 132-avoiding two-stack sortable permutations, Fibonacci numbers, and Pell numbers, Discrete Applied Mathematics, Vol. 143, No. 1-3 (2004), pp. 72-83; arXiv preprint, arXiv:math/0205206 [math.CO], 2002.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[2*n^2+3: n in [0..50]]; // Vincenzo Librandi, Jul 08 2012
-
Table[2 n^2 + 3, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011*)
CoefficientList[Series[(3 - 4 x + 5 x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 08 2012 *)
LinearRecurrence[{3, -3, 1}, {3, 5, 11}, 50] (* Harvey P. Dale, Apr 03 2016 *)
-
a(n)=2*n^2+3; \\ Zak Seidov, Sep 27 2015
Simpler definition and new offset from Paul F. Brewbaker, Jun 23 2009
A002593
a(n) = n^2*(2*n^2 - 1); also Sum_{k=0..n-1} (2k+1)^3.
Original entry on oeis.org
0, 1, 28, 153, 496, 1225, 2556, 4753, 8128, 13041, 19900, 29161, 41328, 56953, 76636, 101025, 130816, 166753, 209628, 260281, 319600, 388521, 468028, 559153, 662976, 780625, 913276, 1062153, 1228528, 1413721, 1619100, 1846081
Offset: 0
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 169, #31.
- F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
- L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 47.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- F. E. Croxton and D. J. Cowden, Applied General Statistics, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1955. [Annotated scans of just pages 742-743]
- Neslihan Kilar, Abdelmejid Bayad, and Yilmaz Simsek, Finite sums involving trigonometric functions and special polynomials: analysis of generating functions and p-adic integrals, Appl. Anal. Disc. Math., hal-04535748, 2024. See p. 22.
- Vladimir Pletser, File Triplets (M,a,c) for M=2n^2
- Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
- G. Xiao, Sigma Server, Operate on "(2*n-1)^3".
- M. J. Zerger, Proof without words: The sum of consecutive odd cubes is a triangular number, Math. Mag., 68 (1995), 371.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[n^2*(2*n^2 - 1): n in [0..40]]; // Vincenzo Librandi, Sep 07 2011
-
A002593:=-z*(z+1)*(z**2+22*z+1)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
a:= n-> n^2*(2*n^2-1): seq(a(n), n=0..50); # Vladimir Pletser, Jan 10 2015
-
CoefficientList[Series[(-x^4-23x^3-23x^2-x)/(x-1)^5,{x,0, 80}],x] (* or *)
Table[ n^2 (2n^2-1),{n,0,80}] (* Harvey P. Dale, Mar 28 2011 *)
Join[{0},Accumulate[Range[1,91,2]^3]] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,28,153,496},40] (* Harvey P. Dale, Mar 22 2017 *)
-
a(n) = n^2*(2*n^2 - 1) \\ Charles R Greathouse IV, Feb 07 2017
Comments