A046092
4 times triangular numbers: a(n) = 2*n*(n+1).
Original entry on oeis.org
0, 4, 12, 24, 40, 60, 84, 112, 144, 180, 220, 264, 312, 364, 420, 480, 544, 612, 684, 760, 840, 924, 1012, 1104, 1200, 1300, 1404, 1512, 1624, 1740, 1860, 1984, 2112, 2244, 2380, 2520, 2664, 2812, 2964, 3120, 3280, 3444, 3612, 3784, 3960, 4140, 4324
Offset: 0
a(7)=112 because 112 = 2*7*(7+1).
The first few triples are (1,0,1), (3,4,5), (5,12,13), (7,24,25), ...
The first such partitions, corresponding to a(n)=1,2,3,4, are 2+2, 4+4+2+2, 6+6+4+4+2+2, 8+8+6+6+4+4+2+2. - _Augustine O. Munagi_, Dec 18 2008
- George E. Andrews and Bruce C. Berndt, Ramanujan's Lost Notebook, Part I, Springer, 2005.
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.
- Albert H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 125, 1964.
- Ronald L. Graham, D. E. Knuth and Oren Patashnik, Concrete Mathematics, Reading, Massachusetts: Addison-Wesley, 1994.
- Peter Winkler, Mathematical Mind-Benders, Wellesley, Massachusetts: A K Peters, 2007.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- H. J. Brothers, Pascal's Prism: Supplementary Material.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, preprint, 2016.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, Vol. 13, No. 4 (2017), Article #47.
- Z. Janelidze, F. van Niekerk, and J. Viljoen, What is the maximal connected partial symmetry index of a connected graph of a given size?, arXiv:2502.00704 [math.CO], 2025. See p. 3.
- Milan Janjic, Two Enumerative Functions
- Ron Knott, Pythagorean Triples and Online Calculators
- Tanya Khovanova, A Miracle Equation.
- Augustine O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., 308 (2008), 2492-2501. [From _Augustine O. Munagi_, Dec 18 2008]
- Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Rusliansyah D. Suprijanto, Observation on Sums of Powers of Integers Divisible by Four, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2219 - 2226.
- Leo Tavares, Illustration: Diamond Rows
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- Eric Weisstein's World of Mathematics, Aztec Diamond.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Connected Dominating Set.
- Eric Weisstein's World of Mathematics, Gear Graph.
- Eric Weisstein's World of Mathematics, Hamiltonian Path.
- Eric Weisstein's World of Mathematics, Pythagorean Triple.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A045943,
A028895,
A002943,
A054000,
A000330,
A007290,
A002378,
A033996,
A124080,
A028896,
A049598,
A005563,
A000217,
A033586,
A085250.
Cf. similar sequences listed in
A299645.
-
a046092 = (* 2) . a002378 -- Reinhard Zumkeller, Dec 15 2013
-
[2*n*(n+1): n in [0..50]]; // Vincenzo Librandi, Oct 04 2011
-
Table[2 n (n + 1), {n, 0, 50}] (* Stefan Steinerberger, Apr 03 2006 *)
LinearRecurrence[{3, -3, 1}, {0, 4, 12}, 50] (* Harvey P. Dale, Jul 25 2011 *)
4*Binomial[Range[50], 2] (* Harvey P. Dale, Jul 25 2011 *)
-
A046092(n):=2*n*(n+1)$
makelist(A046092(n),n,0,30); /* Martin Ettl, Nov 08 2012 */
-
a(n)=binomial(n+1,2)<<2 \\ Charles R Greathouse IV, Jun 10 2011
-
def A046092(n): return n*(n+1)<<1 # Chai Wah Wu, Mar 11 2025
A054000
a(n) = 2*n^2 - 2.
Original entry on oeis.org
0, 6, 16, 30, 48, 70, 96, 126, 160, 198, 240, 286, 336, 390, 448, 510, 576, 646, 720, 798, 880, 966, 1056, 1150, 1248, 1350, 1456, 1566, 1680, 1798, 1920, 2046, 2176, 2310, 2448, 2590, 2736, 2886, 3040, 3198, 3360, 3526, 3696, 3870, 4048, 4230, 4416
Offset: 1
For n=5, a(5)=48 and 37^2 + 48^2 + 59^2 + 70^2 + 81^2 = 59^2 + 60^2 + 61^2 + 62^2 + 63^2. - _Carmine Suriano_, Oct 16 2013
Cf.
A000217,
A001082,
A002378,
A002943,
A005563,
A028347,
A036666,
A046092,
A056220,
A062717,
A067725,
A087475.
-
[ seq(2*n^2 - 2, n=1..60) ];
-
2 Range[50]^2 - 2 (* or *) LinearRecurrence[{3, -3, 1}, {0, 6, 16}, 50] (* Harvey P. Dale, Feb 03 2012 *)
CoefficientList[Series[2 x (3 - x) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 01 2015 *)
-
a(n)=2*n^2-2 \\ Charles R Greathouse IV, Sep 24 2015
A147973
a(n) = -2*n^2 + 12*n - 14.
Original entry on oeis.org
-4, 2, 4, 2, -4, -14, -28, -46, -68, -94, -124, -158, -196, -238, -284, -334, -388, -446, -508, -574, -644, -718, -796, -878, -964, -1054, -1148, -1246, -1348, -1454, -1564, -1678, -1796, -1918, -2044, -2174, -2308, -2446, -2588, -2734, -2884, -3038, -3196, -3358
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- S. Gull, A. Lasenby and C. Doran, Imaginary Numbers are not Real - the Geometric Algebra of Spacetime, Found. Phys., Vol. 23(9) (1993), pp. 1175-1201.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[-2*n^2+12*n-14: n in [1..50]]; // Vincenzo Librandi, Jul 10 2012
-
[-2*n^2+12*n-14$n=1..50]; # Muniru A Asiru, Feb 12 2019
-
lst={};Do[k=n^2-((n-1)^2+(n-2)^2+(n-3)^2);AppendTo[lst,k],{n,5!}];lst
Table[-2n^2+12n-14,{n,1,50}] (* Vincenzo Librandi, Jul 10 2012 *)
LinearRecurrence[{3,-3,1},{-4,2,4},50] (* Harvey P. Dale, Mar 02 2020 *)
-
a(n)=-2*n^2+12*n-14 \\ Charles R Greathouse IV, Sep 24 2015
-
Vec(-2*x*(2 - 7*x + 7*x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, Feb 12 2019
A059993
Pinwheel numbers: a(n) = 2*n^2 + 6*n + 1.
Original entry on oeis.org
1, 9, 21, 37, 57, 81, 109, 141, 177, 217, 261, 309, 361, 417, 477, 541, 609, 681, 757, 837, 921, 1009, 1101, 1197, 1297, 1401, 1509, 1621, 1737, 1857, 1981, 2109, 2241, 2377, 2517, 2661, 2809, 2961, 3117, 3277, 3441, 3609, 3781, 3957, 4137, 4321, 4509, 4701, 4897
Offset: 0
- M. Imran and S. Hayat, On computation of topological indices of Aztec diamonds, Sci. Int. (Lahore), Vol. 26(4), 2014, pp. 1407-1412. - Emeric Deutsch, Sep 23 2017
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Author?, figure. [Wayback Machine link]
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[2*n^2+6*n+1: n in [0..50]]; // Vincenzo Librandi, Mar 01 2013
-
I:=[1,9]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+4: n in [1..50]]; // Vincenzo Librandi, Mar 01 2013
-
Table[2 n^2 + 6 n + 1, {n, 0, 46}] (* Zerinvary Lajos, Jul 10 2009 *)
LinearRecurrence[{3,-3,1},{1,9,21},50] (* Harvey P. Dale, Oct 01 2018 *)
-
a(n) = { 2*n^2 + 6*n + 1 } \\ Harry J. Smith, Jul 01 2009
A222182
Numbers m such that 2*m + 11 is a square.
Original entry on oeis.org
-5, -1, 7, 19, 35, 55, 79, 107, 139, 175, 215, 259, 307, 359, 415, 475, 539, 607, 679, 755, 835, 919, 1007, 1099, 1195, 1295, 1399, 1507, 1619, 1735, 1855, 1979, 2107, 2239, 2375, 2515, 2659, 2807, 2959, 3115, 3275, 3439, 3607, 3779, 3955, 4135, 4319, 4507, 4699
Offset: 1
After a(2), subsequence of
A168489.
-
[m: m in [-5..5000] | IsSquare(2*m+11)];
-
I:=[-5,-1,7]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Mar 04 2013
-
Table[2 n^2 - 2 n - 5, {n, 50}]
-
makelist(coeff(taylor(-(5-14*x+5*x^2)/(1-x)^3, x, 0, n), x, n), n, 0, 50);
-
a(n)=2*n^2-2*n-5 \\ Charles R Greathouse IV, Jun 17 2017
A268581
a(n) = 2*n^2 + 8*n + 5.
Original entry on oeis.org
5, 15, 29, 47, 69, 95, 125, 159, 197, 239, 285, 335, 389, 447, 509, 575, 645, 719, 797, 879, 965, 1055, 1149, 1247, 1349, 1455, 1565, 1679, 1797, 1919, 2045, 2175, 2309, 2447, 2589, 2735, 2885, 3039, 3197, 3359, 3525, 3695, 3869, 4047, 4229, 4415, 4605
Offset: 0
Cf. numbers n such that 2*n + k is a perfect square:
A093328 (k=-6),
A097080 (k=-5), no sequence (k=-4),
A051890 (k=-3),
A058331 (k=-2),
A001844 (k=-1),
A001105 (k=0),
A046092 (k=1),
A056222 (k=2),
A142463 (k=3),
A054000 (k=4),
A090288 (k=5), this sequence (k=6),
A059993 (k=7),
A147973 (k=8),
A139570 (k=9), no sequence (k=10),
A222182 (k=11),
A152811 (k=12),
A181570 (k=13).
-
[2*n^2+8*n+5: n in [0..60]];
-
[n: n in [0..6000] | IsSquare(2*n+6)];
-
Table[2 n^2 + 8 n + 5, {n, 0, 50}] (* Vincenzo Librandi, Apr 13 2016 *)
LinearRecurrence[{3,-3,1},{5,15,29},50] (* Harvey P. Dale, Jan 18 2017 *)
-
lista(nn) = for(n=0, nn, print1(2*n^2+8*n+5, ", ")); \\ Altug Alkan, Apr 10 2016
-
[2*n^2 + 8*n + 5 for n in [0..46]] # Stefano Spezia, Aug 04 2021
Changed offset from 1 to 0, adapted formulas and programs by
Bruno Berselli, Apr 13 2016
A271625
a(n) = = 2*(n+1)^2 - 5.
Original entry on oeis.org
3, 13, 27, 45, 67, 93, 123, 157, 195, 237, 283, 333, 387, 445, 507, 573, 643, 717, 795, 877, 963, 1053, 1147, 1245, 1347, 1453, 1563, 1677, 1795, 1917, 2043, 2173, 2307, 2445, 2587, 2733, 2883, 3037, 3195, 3357, 3523, 3693, 3867, 4045, 4227, 4413, 4603, 4797, 4995, 5197, 5403, 5613, 5827
Offset: 1
Numbers h such that 2*h + k is a perfect square:
A294774 (k=-9),
A255843 (k=-8),
A271649 (k=-7),
A093328 (k=-6),
A097080 (k=-5),
A271624 (k=-4),
A051890 (k=-3),
A058331 (k=-2),
A001844 (k=-1),
A001105 (k=0),
A046092 (k=1),
A056222 (k=2),
A142463 (k=3),
A054000 (k=4),
A090288 (k=5),
A268581 (k=6),
A059993 (k=7), (-1)*
A147973 (k=8),
A139570 (k=9), this sequence (k=10),
A222182 (k=11),
A152811 (k=12),
A181510 (k=13),
A161532 (k=14), no sequence (k=15).
-
[ 2*n^2 + 4*n - 3: n in [1..60]];
-
[ n: n in [1..6000] | IsSquare(2*n+10)];
-
Table[2 n^2 + 4 n - 3, {n, 53}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3,-3,1},{3,13,27},60] (* Harvey P. Dale, Jun 08 2023 *)
2*Range[2,60]^2 -5 (* G. C. Greubel, Jan 21 2025 *)
-
x='x+O('x^99); Vec(x*(3+4*x-3*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
-
def A271625(n): return 2*pow(n+1,2) - 5
print([A271625(n) for n in range(1,61)]) # G. C. Greubel, Jan 21 2025
A155724
Triangle read by rows: T(n, k) = 2*n*k + n + k - 4.
Original entry on oeis.org
0, 3, 8, 6, 13, 20, 9, 18, 27, 36, 12, 23, 34, 45, 56, 15, 28, 41, 54, 67, 80, 18, 33, 48, 63, 78, 93, 108, 21, 38, 55, 72, 89, 106, 123, 140, 24, 43, 62, 81, 100, 119, 138, 157, 176, 27, 48, 69, 90, 111, 132, 153, 174, 195, 216, 30, 53, 76, 99, 122, 145, 168, 191, 214, 237, 260
Offset: 1
Triangle begins:
0;
3, 8;
6, 13, 20;
9, 18, 27, 36;
12, 23, 34, 45, 56;
15, 28, 41, 54, 67, 80;
18, 33, 48, 63, 78, 93, 108;
21, 38, 55, 72, 89, 106, 123, 140;
24, 43, 62, 81, 100, 119, 138, 157, 176;
27, 48, 69, 90, 111, 132, 153, 174, 195, 216;
-
/* Triangle: */ [[2*m*n+m+n-4: m in [1..n]]: n in [1..10]]; // Bruno Berselli, Aug 31 2012
-
Flatten[Table[2 n m + m + n - 4, {n, 10}, {m, n}]] (* Vincenzo Librandi, Mar 01 2012 *)
-
def A155724(n,k): return 2*n*k+n+k-4
print(flatten([[A155724(n,k) for k in range(1,n+1)] for n in range(1,16)])) # G. C. Greubel, Jan 21 2025
A271624
a(n) = 2*n^2 - 4*n + 4.
Original entry on oeis.org
2, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234, 4420, 4610, 4804, 5002, 5204, 5410, 5620
Offset: 1
a(1) = 2*1^2 - 4*1 + 4 = 2.
Cf.
A002522, numbers n such that 2*n + k is a perfect square: no sequence (k = -9),
A255843 (k = -8),
A271649 (k = -7),
A093328 (k = -6),
A097080 (k = -5), this sequence (k = -4),
A051890 (k = -3),
A058331 (k = -2),
A001844 (k = -1),
A001105 (k = 0),
A046092 (k = 1),
A056222 (k = 2),
A142463 (k = 3),
A054000 (k = 4),
A090288 (k = 5),
A268581 (k = 6),
A059993 (k = 7), (-1)*
A147973 (k = 8),
A139570 (k = 9),
A271625 (k = 10),
A222182 (k = 11),
A152811 (k = 12),
A181510 (k = 13),
A161532 (k = 14), no sequence (k = 15).
-
[ 2*n^2 - 4*n + 4: n in [1..60]];
-
[ n: n in [1..6000] | IsSquare(2*n-4)];
-
Table[2 n^2 - 4 n + 4, {n, 54}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3,-3,1},{2,4,10},60] (* Harvey P. Dale, Jul 18 2023 *)
-
x='x+O('x^99); Vec(2*x*(1-x+2*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
-
a(n)=2*n^2-4*n+4 \\ Charles R Greathouse IV, Apr 11 2016
A245300
Triangle T(n,k) = (n+k)*(n+k+1)/2 + k, 0 <= k <= n, read by rows.
Original entry on oeis.org
0, 1, 4, 3, 7, 12, 6, 11, 17, 24, 10, 16, 23, 31, 40, 15, 22, 30, 39, 49, 60, 21, 29, 38, 48, 59, 71, 84, 28, 37, 47, 58, 70, 83, 97, 112, 36, 46, 57, 69, 82, 96, 111, 127, 144, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220
Offset: 0
First rows and their row sums (A245301):
0 0;
1, 4 5;
3, 7, 12 22;
6, 11, 17, 24 58;
10, 16, 23, 31, 40 120;
15, 22, 30, 39, 49, 60 215;
21, 29, 38, 48, 59, 71, 84 350;
28, 37, 47, 58, 70, 83, 97, 112 532;
36, 46, 57, 69, 82, 96, 111, 127, 144 768;
45, 56, 68, 81, 95, 110, 126, 143, 161, 180 1065;
55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220 1430;
66, 79, 93, 108, 124, 141, 159, 178, 198, 219, 241, 264 1870;
78, 92, 107, 123, 140, 158, 177, 197, 218, 240, 263, 287, 312 2392.
-
a245300 n k = (n + k) * (n + k + 1) `div` 2 + k
a245300_row n = map (a245300 n) [0..n]
a245300_tabl = map a245300_row [0..]
a245300_list = concat a245300_tabl
-
[k + Binomial(n+k+1,2): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 01 2021
-
Table[k + Binomial[n+k+1,2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
-
flatten([[k + binomial(n+k+1,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 01 2021
Showing 1-10 of 16 results.
Comments