cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 87 results. Next

A262000 a(n) = n^2*(7*n - 5)/2.

Original entry on oeis.org

0, 1, 18, 72, 184, 375, 666, 1078, 1632, 2349, 3250, 4356, 5688, 7267, 9114, 11250, 13696, 16473, 19602, 23104, 27000, 31311, 36058, 41262, 46944, 53125, 59826, 67068, 74872, 83259, 92250, 101866, 112128, 123057, 134674, 147000, 160056, 173863, 188442, 203814, 220000
Offset: 0

Views

Author

Bruno Berselli, Sep 08 2015

Keywords

Comments

Also, structured enneagonal prism numbers.

Examples

			For n=8, a(8) = 8*(7*0+1)+8*(7*1+1)+8*(7*2+1)+8*(7*3+1)+8*(7*4+1)+8*(7*5+1)+8*(7*6+1)+8*(7*7+1) = 1632.
		

Crossrefs

Cf. similar sequences with the formula n^2*(k*n - k + 2)/2: A000290 (k=0), A002411 (k=1), A000578 (k=2), A050509 (k=3), A015237 (k=4), A006597 (k=5), A100176 (k=6), this sequence (k=7), A103532 (k=8).

Programs

  • Magma
    [n^2*(7*n-5)/2: n in [0..40]];
  • Mathematica
    Table[n^2 (7 n - 5)/2, {n, 0, 40}]
    LinearRecurrence[{4,-6,4,-1},{0,1,18,72},50] (* Harvey P. Dale, Oct 04 2016 *)
  • PARI
    vector(40, n, n--; n^2*(7*n-5)/2)
    
  • Sage
    [n^2*(7*n-5)/2 for n in (0..40)]
    

Formula

G.f.: x*(1 + 14*x + 6*x^2)/(1 - x)^4.
a(n) = Sum_{i=0..n-1} n*(7*i+1) for n>0, a(0)=0.
a(n+1) + a(-n) = A069125(n+1).
Sum_{i>0} 1/a(i) = 1.082675669875907610300284768825... = (42*(log(14) + 2*(cos(Pi/7)*log(cos(3*Pi/14)) + log(sin(Pi/7))*sin(Pi/14) - log(cos(Pi/14)) * sin(3*Pi/14))) + 21*Pi*tan(3*Pi/14))/75 - Pi^2/15. - Vaclav Kotesovec, Oct 04 2016
From Elmo R. Oliveira, Aug 06 2025: (Start)
E.g.f.: exp(x)*x*(2 + 16*x + 7*x^2)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

A276682 Number of divisors of the n-th 9-gonal number.

Original entry on oeis.org

1, 3, 8, 4, 6, 4, 8, 12, 6, 6, 18, 8, 4, 8, 16, 8, 8, 9, 14, 24, 8, 4, 16, 12, 8, 8, 24, 8, 12, 12, 8, 20, 8, 4, 48, 24, 4, 12, 16, 24, 8, 12, 12, 16, 18, 4, 20, 16, 9, 16, 40, 8, 8, 8, 24, 36, 8, 4, 24, 24, 4, 16, 24, 12, 24, 8, 16, 16, 8, 12, 16, 18, 8, 16
Offset: 1

Views

Author

Colin Barker, Sep 13 2016

Keywords

Examples

			a(2) = 3 because the 2nd 9-gonal number is 9, which has 3 divisors: 1,3,9.
		

Crossrefs

Cf. A063440 (m=3), A048691 (m=4), A276678 (m=5), A276679 (m=6), A276680 (m=7), A276681 (m=8), A276683 (m=10).

Programs

  • Mathematica
    DivisorSigma[0,PolygonalNumber[9,Range[80]]] (* Harvey P. Dale, Dec 02 2024 *)
  • PARI
    pg(m, n) = (n^2*(m-2)-n*(m-4))/2 \\ n-th m-gonal number
    vector(150, n, numdiv(pg(9,n)))

Formula

a(n) = A000005(A001106(n)).

A051877 Partial sums of A051740.

Original entry on oeis.org

1, 12, 57, 182, 462, 1008, 1974, 3564, 6039, 9724, 15015, 22386, 32396, 45696, 63036, 85272, 113373, 148428, 191653, 244398, 308154, 384560, 475410, 582660, 708435, 855036, 1024947, 1220842, 1445592, 1702272, 1994168, 2324784, 2697849, 3117324, 3587409
Offset: 0

Views

Author

Barry E. Williams, Dec 14 1999

Keywords

Comments

Convolution of triangular numbers (A000217) and enneagonal numbers (A001106). - Bruno Berselli, Jul 21 2015

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-16.

Crossrefs

Cf. A093564 ((7, 1) Pascal, column m=5).

Programs

  • GAP
    List([0..40], n-> (7*n+5)*Binomial(n+4,4)/5); # G. C. Greubel, Aug 29 2019
  • Magma
    [(n+1)*(n+2)*(n+3)*(n+4)*(7*n+5)/120 : n in [0..40]]; // Wesley Ivan Hurt, May 02 2015
    
  • Maple
    A051877:=n->binomial(n+4,4)*(7*n+5)/5: seq(A051877(n), n=0..40); # Wesley Ivan Hurt, May 02 2015
  • Mathematica
    Table[(n+1)(n+2)(n+3)(n+4)(7n+5)/120, {n, 0, 40}] (* Vincenzo Librandi, May 03 2015 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,12,57,182,462,1008},40] (* Harvey P. Dale, May 05 2022 *)
  • PARI
    vector(40, n, (7*n-2)*binomial(n+3,4)/5) \\ G. C. Greubel, Aug 29 2019
    
  • Sage
    [(7*n+5)*binomial(n+4,4)/5 for n in (0..40)] # G. C. Greubel, Aug 29 2019
    

Formula

a(n) = C(n+4, 4)*(7*n+5)/5.
G.f.: (1+6*x)/(1-x)^6.
From Wesley Ivan Hurt, May 02 2015: (Start)
a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6).
a(n) = (n+1)*(n+2)*(n+3)*(n+4)*(7*n+5)/120. (End)
E.g.f.: (5! +1320*x +2040*x^2 +920*x^3 +145*x^4 +7*x^5)*exp(x)/5!

A226489 a(n) = n*(15*n-11)/2.

Original entry on oeis.org

0, 2, 19, 51, 98, 160, 237, 329, 436, 558, 695, 847, 1014, 1196, 1393, 1605, 1832, 2074, 2331, 2603, 2890, 3192, 3509, 3841, 4188, 4550, 4927, 5319, 5726, 6148, 6585, 7037, 7504, 7986, 8483, 8995, 9522, 10064, 10621, 11193, 11780, 12382, 12999, 13631, 14278, 14940
Offset: 0

Views

Author

Bruno Berselli, Jun 09 2013

Keywords

Comments

Sum of n-th 9-gonal (nonagonal) number and n-th 10-gonal (decagonal) number.
Sum of reciprocals of a(n), for n > 0: 0.614629940137818703272919217222307...

Crossrefs

Cf. numbers of the form n*(n*k - k + 4)/2, this sequence is the case k=15: see list in A226488.

Programs

  • Magma
    [n*(15*n-11)/2: n in [0..50]];
    
  • Magma
    I:=[0,2,19]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (15 n - 11)/2, {n, 0, 50}]
    CoefficientList[Series[x (2 + 13 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    a(n)=n*(15*n-11)/2 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: x*(2+13*x)/(1-x)^3.
a(n) + a(-n) = A064761(n).
From Elmo R. Oliveira, Jan 12 2025: (Start)
E.g.f.: exp(x)*x*(4 + 15*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A302913 Determinant of n X n matrix whose main diagonal consists of the first n 9-gonal numbers and all other elements are 1's.

Original entry on oeis.org

1, 8, 184, 8280, 612720, 67399200, 10312077600, 2093351752800, 544271455728000, 176343951655872000, 69655860904069440000, 32947222207624845120000, 18384549991854663576960000, 11949957494705531325024000000, 8950518163534442962442976000000
Offset: 1

Views

Author

Muniru A Asiru, Apr 15 2018

Keywords

Examples

			The matrix begins:
1   1   1   1   1   1   1 ...
1   9   1   1   1   1   1 ...
1   1  24   1   1   1   1 ...
1   1   1  46   1   1   1 ...
1   1   1   1  75   1   1 ...
1   1   1   1   1 111   1 ...
1   1   1   1   1   1 154 ...
		

Crossrefs

Cf. A001106 (nonagonal numbers).
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's: A000142 (k=2), A067550 (k=3), A010791 (k=4, with offset 1), A302909 (k=5), A302910 (k=6), A302911 (k=7), A302912 (k=8), this sequence (k=9), A302914 (k=10).

Programs

  • Maple
    d:=(i,j)->`if`(i<>j,1,i*(7*i-5)/2):
    seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..16);
  • Mathematica
    nmax = 20; Table[Det[Table[If[i == j, i*(7*i-5)/2, 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
    RecurrenceTable[{a[n+1] == a[n] * n*(7*n + 9)/2, a[1] == 1}, a, {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *)
    Table[FullSimplify[7^(n + 1) * Gamma[n] * Gamma[n + 9/7] / (9*Gamma[2/7]*2^n)], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)
  • PARI
    a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(7*i-5)/2))); \\ Michel Marcus, Apr 16 2018

Formula

From Vaclav Kotesovec, Apr 16 2018: (Start)
a(n) = 7^(n+1) * Gamma(n) * Gamma(n + 9/7) / (9 * Gamma(2/7) * 2^n).
a(n) ~ Pi * 7^(n+1) * n^(2*n + 2/7) / (9 * Gamma(2/7) * 2^(n-1) * exp(2*n)).
a(n+1) = a(n) * n*(7*n + 9)/2.
(End)

A317302 Square array T(n,k) = (n - 2)*(k - 1)*k/2 + k, with n >= 0, k >= 0, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, -3, 0, 1, 2, 0, -8, 0, 1, 3, 3, -2, -15, 0, 1, 4, 6, 4, -5, -24, 0, 1, 5, 9, 10, 5, -9, -35, 0, 1, 6, 12, 16, 15, 6, -14, -48, 0, 1, 7, 15, 22, 25, 21, 7, -20, -63, 0, 1, 8, 18, 28, 35, 36, 28, 8, -27, -80, 0, 1, 9, 21, 34, 45, 51, 49, 36, 9, -35, -99, 0, 1, 10, 24, 40, 55, 66
Offset: 0

Views

Author

Omar E. Pol, Aug 09 2018

Keywords

Comments

Note that the formula gives several kinds of numbers, for example:
Row 0 gives 0 together with A258837.
Row 1 gives 0 together with A080956.
Row 2 gives A001477, the nonnegative numbers.
For n >= 3, row n gives the n-gonal numbers (see Crossrefs section).

Examples

			Array begins:
------------------------------------------------------------------------
n\k  Numbers       Seq. No.   0   1   2   3   4    5    6    7    8
------------------------------------------------------------------------
0    ............ (A258837):  0,  1,  0, -3, -8, -15, -24, -35, -48, ...
1    ............ (A080956):  0,  1,  1,  0, -2,  -5,  -9, -14, -20, ...
2    Nonnegatives  A001477:   0,  1,  2,  3,  4,   5,   6,   7,   8, ...
3    Triangulars   A000217:   0,  1,  3,  6, 10,  15,  21,  28,  36, ...
4    Squares       A000290:   0,  1,  4,  9, 16,  25,  36,  49,  64, ...
5    Pentagonals   A000326:   0,  1,  5, 12, 22,  35,  51,  70,  92, ...
6    Hexagonals    A000384:   0,  1,  6, 15, 28,  45,  66,  91, 120, ...
7    Heptagonals   A000566:   0,  1,  7, 18, 34,  55,  81, 112, 148, ...
8    Octagonals    A000567:   0,  1,  8, 21, 40,  65,  96, 133, 176, ...
9    9-gonals      A001106:   0,  1,  9, 24, 46,  75, 111, 154, 204, ...
10   10-gonals     A001107:   0,  1, 10, 27, 52,  85, 126, 175, 232, ...
11   11-gonals     A051682:   0,  1, 11, 30, 58,  95, 141, 196, 260, ...
12   12-gonals     A051624:   0,  1, 12, 33, 64, 105, 156, 217, 288, ...
13   13-gonals     A051865:   0,  1, 13, 36, 70, 115, 171, 238, 316, ...
14   14-gonals     A051866:   0,  1, 14, 39, 76, 125, 186, 259, 344, ...
15   15-gonals     A051867:   0,  1, 15, 42, 82, 135, 201, 280, 372, ...
...
		

Crossrefs

Column 0 gives A000004.
Column 1 gives A000012.
Column 2 gives A001477, which coincides with the row numbers.
Main diagonal gives A060354.
Row 0 gives 0 together with A258837.
Row 1 gives 0 together with A080956.
Row 2 gives A001477, the same as column 2.
For n >= 3, row n gives the n-gonal numbers: A000217 (n=3), A000290 (n=4), A000326 (n=5), A000384 (n=6), A000566 (n=7), A000567 (n=8), A001106 (n=9), A001107 (n=10), A051682 (n=11), A051624 (n=12), A051865 (n=13), A051866 (n=14), A051867 (n=15), A051868 (n=16), A051869 (n=17), A051870 (n=18), A051871 (n=19), A051872 (n=20), A051873 (n=21), A051874 (n=22), A051875 (n=23), A051876 (n=24), A255184 (n=25), A255185 (n=26), A255186 (n=27), A161935 (n=28), A255187 (n=29), A254474 (n=30).
Cf. A303301 (similar table but with generalized polygonal numbers).

Formula

T(n,k) = A139600(n-2,k) if n >= 2.
T(n,k) = A139601(n-3,k) if n >= 3.

A033572 a(n) = (2*n+1)*(7*n+1).

Original entry on oeis.org

1, 24, 75, 154, 261, 396, 559, 750, 969, 1216, 1491, 1794, 2125, 2484, 2871, 3286, 3729, 4200, 4699, 5226, 5781, 6364, 6975, 7614, 8281, 8976, 9699, 10450, 11229, 12036, 12871, 13734, 14625, 15544, 16491, 17466, 18469, 19500, 20559, 21646, 22761, 23904, 25075, 26274, 27501, 28756
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 24,..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 13 2011

Crossrefs

Bisection of A001106.

Programs

Formula

a(n) = a(n-1) + 28*n - 5 for n>0, a(0)=1. - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Oct 12 2019: (Start)
G.f.: (1 + 21*x + 6*x^2)/(1-x)^3.
E.g.f.: (1 + 23*x + 14*x^2)*exp(x). (End)
Sum 1/a(n) = -gamma/5 -2*log(2)/5 -psi(1/7)/5 = 1.0800940432405839438217..., gamma=A001620, psi(1/7) = -A354627. - R. J. Mathar, May 07 2024

A048909 9-gonal (or nonagonal) triangular numbers.

Original entry on oeis.org

1, 325, 82621, 20985481, 5330229625, 1353857339341, 343874433963061, 87342752369278225, 22184715227362706161, 5634830324997758086741, 1431224717834203191326125, 363525443499562612838749081, 92334031424171069457850940521, 23452480456295952079681300143325
Offset: 1

Views

Author

Keywords

Comments

We want solutions to m(7m-5)/2 = n(n+1)/2, or equivalently (14m-5)^2 = 7(2n+1)^2 + 18. This is the Pell-type equation x^2 - 7y^2 = 18.
This equation has unit solutions (x,y) = (5,1), (9, 3) and (19, 7), which lead to the family of solutions (5, 1), (9, 3), (19, 7), (61, 23), (135, 51), (299, 113), (971, 367), .... The corresponding integer solutions are (m,n) = (1,1), (10, 25), (154, 406), (2449, 6478), ... (A048907 and A048908), giving the nonagonal triangular numbers 1, 325, 82621, 20985481, ... shown here.
Also, numbers simultaneously 9-gonal and centered 9-gonal, the intersection of A001106 and A060544. - Steven Schlicker, Apr 24 2007

Crossrefs

Programs

  • Maple
    CP := n -> 1+1/2*9*(n^2-n): N:=10: u:=8: v:=1: x:=9: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+63*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp; # Steven Schlicker, Apr 24 2007
  • Mathematica
    LinearRecurrence[{255, -255, 1}, {1, 325, 82621}, 12]; (* Ant King, Nov 03 2011 *)
  • PARI
    Vec(-x*(x^2+70*x+1)/((x-1)*(x^2-254*x+1)) + O(x^20)) \\ Colin Barker, Jun 22 2015

Formula

Define x(n) + y(n)*sqrt(63) = (9+sqrt(63))*(8+sqrt(63))^n, s(n) = (y(n)+1)/2; then a(n) = (2+9*(s(n)^2-s(n)))/2. - Steven Schlicker, Apr 24 2007
a(n+1) = 254*a(n+1)-a(n)+72. - Richard Choulet, Sep 22 2007
a(n+1) = 127*a(n+1)+36+6*(448*a(n)^2+256*a(n)+25)^0.5. - Richard Choulet, Sep 22 2007
G.f.: z*(1+70*z+z^2)/((1-z)*(1-254*z+z^2)). - Richard Choulet, Sep 22 2007
From Ant King, Nov 03 2011: (Start)
a(n) = 255*a(n-1) - 255*a(n-2) + a(n-3).
a(n) = 1/112*(9*(8 + 3*sqrt(7))^(2n-1) + 9*(8-3* sqrt(7))^(2n-1) - 32).
a(n) = floor(9/112*(8 + 3*sqrt(7))^(2n-1)).
Limit_{n -> oo} a(n)/a(n-1) = (8 + 3*sqrt(7))^2. (End)

Extensions

Edited by N. J. A. Sloane at the suggestion of Richard Choulet, Sep 22 2007

A055560 Base numbers of 9-gonal palindromic numbers.

Original entry on oeis.org

1, 2, 6, 12, 17, 44, 74, 139, 1123, 1411, 2101, 4070, 11323, 11472, 12870, 16318, 16853, 18729, 52642, 132619, 435644, 446904, 168566853, 350096787, 521037077, 708609429, 1121857192, 1641773578, 11947307367, 21633254881, 75356090494
Offset: 1

Views

Author

J. Lowell, Jul 10 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 10^5], PalindromeQ[PolygonalNumber[9, #]] &] (* Robert Price, Apr 29 2019 *)

Formula

9-gonal numbers are of the form (n(7n-5))/2.

Extensions

Edited and extended by Patrick De Geest, Apr 13 2003.

A172076 a(n) = n*(n+1)*(14*n-11)/6.

Original entry on oeis.org

0, 1, 17, 62, 150, 295, 511, 812, 1212, 1725, 2365, 3146, 4082, 5187, 6475, 7960, 9656, 11577, 13737, 16150, 18830, 21791, 25047, 28612, 32500, 36725, 41301, 46242, 51562, 57275, 63395, 69936, 76912, 84337, 92225, 100590, 109446, 118807, 128687
Offset: 0

Views

Author

Vincenzo Librandi, Jan 25 2010

Keywords

Comments

Generated by the formula n*(n+1)*(2*d*n-(2*d-3))/6 for d=7.
From Bruno Berselli, Dec 14 2010: (Start)
In fact, the sequence is related to A001106 by a(n) = n*A001106(n) - Sum_{k=0..n-1} A001106(k) and this is the case d=7 in the identity n*(n*(d*n-d+2)/2) - Sum_{k=0..n-1} k*(d*k-d+2)/2 = n*(n+1)*(2*d*n-2*d+3)/6.
Also 16-gonal (or hexadecagonal) pyramidal numbers.
Inverse binomial transform of this sequence: 0, 1, 15, 14, 0, 0 (0 continued). (End)

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. [From Bruno Berselli, Feb 13 2014]

Crossrefs

Cf. similar sequences listed in A237616.

Programs

Formula

G.f.: x*(1+13*x)/(1-x)^4. - Bruno Berselli, Dec 15 2010
a(n) = Sum_{i=0..n} A051868(i). - Bruno Berselli, Dec 15 2010
a(n) = Sum_{i=0..n-1} (n-i)*(14*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(6 + 45*x + 14*x^2)*exp(x)/6. - G. C. Greubel, Aug 30 2019
Previous Showing 41-50 of 87 results. Next