cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 63 results. Next

A322699 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is 1/2 * (-1 + Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 8, 2, 0, 0, 49, 24, 3, 0, 0, 288, 242, 48, 4, 0, 0, 1681, 2400, 675, 80, 5, 0, 0, 9800, 23762, 9408, 1444, 120, 6, 0, 0, 57121, 235224, 131043, 25920, 2645, 168, 7, 0, 0, 332928, 2328482, 1825200, 465124, 58080, 4374, 224, 8, 0
Offset: 0

Views

Author

Seiichi Manyama, Dec 23 2018

Keywords

Examples

			Square array begins:
   0, 0,   0,    0,      0,       0,        0, ...
   0, 1,   8,   49,    288,    1681,     9800, ...
   0, 2,  24,  242,   2400,   23762,   235224, ...
   0, 3,  48,  675,   9408,  131043,  1825200, ...
   0, 4,  80, 1444,  25920,  465124,  8346320, ...
   0, 5, 120, 2645,  58080, 1275125, 27994680, ...
   0, 6, 168, 4374, 113568, 2948406, 76545000, ...
		

Crossrefs

Columns 0-5 give A000004, A001477, A033996, A322675, A322677, A322745.
Main diagonal gives A322746.
Cf. A173175 (A(n,2*n)), A322790.

Programs

  • Mathematica
    Unprotect[Power]; 0^0 := 1; Protect[Power]; Table[(-1 + Sum[Binomial[2 k, 2 j] (# + 1)^(k - j)*#^j, {j, 0, k}])/2 &[n - k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Jan 01 2019 *)
    nmax = 9; row[n_] := LinearRecurrence[{4n+3, -4n-3, 1}, {0, n, 4n(n+1)}, nmax+1]; T = Array[row, nmax+1, 0]; A[n_, k_] := T[[n+1, k+1]];
    Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 06 2019 *)
  • Ruby
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      (0..n).map{|i| (0..k).inject(-1){|s, j| s + ncr(2 * k, 2 * j) * (i + 1) ** (k - j) * i ** j} / 2}
    end
    def A322699(n)
      a = []
      (0..n).each{|i| a << A(i, n - i)}
      ary = []
      (0..n).each{|i|
        (0..i).each{|j|
          ary << a[i - j][j]
        }
      }
      ary
    end
    p A322699(10)

Formula

sqrt(A(n,k)+1) + sqrt(A(n,k)) = (sqrt(n+1) + sqrt(n))^k.
sqrt(A(n,k)+1) - sqrt(A(n,k)) = (sqrt(n+1) - sqrt(n))^k.
A(n,0) = 0, A(n,1) = n and A(n,k) = (4*n+2) * A(n,k-1) - A(n,k-2) + 2*n for k > 1.
A(n,k) = (T_{k}(2*n+1) - 1)/2 where T_{k}(x) is a Chebyshev polynomial of the first kind.
T_1(x) = x. So A(n,1) = (2*n+1-1)/2 = n.

A008843 Squares of NSW numbers (A002315): x^2 such that x^2 - 2y^2 = -1 for some y.

Original entry on oeis.org

1, 49, 1681, 57121, 1940449, 65918161, 2239277041, 76069501249, 2584123765441, 87784138523761, 2982076586042449, 101302819786919521, 3441313796169221281, 116903366249966604049, 3971273138702695316401, 134906383349641674153601, 4582845760749114225906049, 155681849482120242006652081
Offset: 0

Views

Author

Keywords

Comments

Also indices of triangular numbers (A000217) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 16 2015
a(n)-th triangular number is a square; subsequence of A001108. - Jaroslav Krizek, Aug 05 2016

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 256.
  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 288.
  • P. F. Teilhet, Note #2094, L'Intermédiaire des Mathématiciens, 10 (1903), pp. 235-238.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{35,-35,1},{1,49,1681},17] (* Stefano Spezia, Aug 17 2024 *)

Formula

a(n) = 34*a(n-1) - a(n-2) + 16 = A002315(n)^2 = 2*A001653(n)^2 - 1 = 2*A008844(n) - 1 = floor(A046176(n)*sqrt(2)) = 6*A055792(n+1) - a(n-1) + 4 = (6*A055792(n+2) + a(n-1) - 20)/35. - Henry Bottomley, Nov 13 2001
a(n) = A001108(2n+1). - Ira M. Gessel, Nov 05 2014
a(n) = Sum_{k=1..2*n+1} 2^(k-1)*binomial(4*n+2, 2*k). - Zoltan Zachar (zachar(AT)fellner.sulinet.hu), Oct 03 2003
O.g.f.: -(1+14*x+x^2)/((-1+x)*(1-34*x+x^2)). - R. J. Mathar, Nov 23 2007
a(n) = -(cosh((2*n - 1)*arctanh(sqrt(2))))^2 = -1 - (sinh((2*n - 1)*arctanh(sqrt(2))))^2. - Artur Jasinski, Oct 30 2008
a(n) = Sum_{k=0..4n+1} A000129(k), see Santana and Diaz-Barrero link at A002315. - Ivan N. Ianakiev, Jul 15 2022

Extensions

a(14)-a(17) from Stefano Spezia, Aug 17 2024

A124124 Nonnegative integers n such that 2n^2 + 2n - 3 is square.

Original entry on oeis.org

1, 2, 6, 13, 37, 78, 218, 457, 1273, 2666, 7422, 15541, 43261, 90582, 252146, 527953, 1469617, 3077138, 8565558, 17934877, 49923733, 104532126, 290976842, 609257881, 1695937321, 3551015162, 9884647086, 20696833093, 57611945197, 120629983398, 335787024098
Offset: 1

Views

Author

John W. Layman, Nov 29 2006

Keywords

Comments

First differences are apparently in A143608. [R. J. Mathar, Jul 17 2009]
Alternative definition: T_n and (T_n - 1)/2 are triangular numbers. - Raphie Frank, Sep 06 2012

Crossrefs

Programs

  • Maple
    A124124 := proc(n)
    coeftayl(x*(1+x-2*x^2+x^3+x^4)/((1-x)*(x^2-2*x-1)*(x^2+2*x-1)), x=0, n);
    end proc:
    seq(A124124(n), n=1..20); # Wesley Ivan Hurt, Aug 04 2014
    # Alternative:
    a[1]:= 1: a[2]:= 2: a[3]:= 6:
    for n from 4 to 1000 do
    a[n]:= (3 + 2*(n mod 2))*(a[n-1]-a[n-2])+a[n-3]
    od:
    seq(a[n],n=1..100); # Robert Israel, Aug 13 2014
  • Mathematica
    LinearRecurrence[{1,6,-6,-1,1},{1,2,6,13,37},40] (* Harvey P. Dale, Nov 05 2011 *)
    CoefficientList[Series[(1 + x - 2*x^2 + x^3 + x^4)/((1 - x)*(x^2 - 2*x - 1)*(x^2 + 2*x - 1)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 04 2014 *)
  • PARI
    for(n=1,10^10,if(issquare(2*n^2+2*n-3),print1(n,", "))) \\ Derek Orr, Aug 13 2014

Formula

It appears that a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) if n is even, a(n) = 5*a(n-1)-5*a(n-2)+a(n-3) if n is odd. Can anyone confirm this?
Corrected and confirmed (using the g.f.) by Robert Israel, Aug 27 2014
2*a(n) = sqrt(7+2*A077442(n-1)^2)-1. - R. J. Mathar, Dec 03 2006
a(n) = a(n-1)+6*a(n-2)-6*a(n-3)-a(n-4)+a(n-5). G.f.: -x*(1+x-2*x^2+x^3+x^4)/((x-1)*(x^2-2*x-1)*(x^2+2*x-1)). [R. J. Mathar, Jul 17 2009]
For n>0, a(2n-1) = 2*A001653(n) - A046090(n-1) and a(2n) = 2*A001653(n) + A001652(n-1). - Charlie Marion, Jan 03 2012
From Raphie Frank, Sep 06 2012: (Start)
If y = A006452(n), then a(n) = 2y + ((sqrt(8y^2 - 7) - 1)/2 - (1 - sgn(n))).
Also see A216134 [a(n) = y + ((sqrt(8y^2 - 7) - 1)/2 - (1 - sgn(n)))].
(End)
From Hermann Stamm-Wilbrandt, Aug 27 2014: (Start)
a(2*n+2) = A098586(2*n).
a(2*n+1) = A098790(2*n).
a(n) = 7*a(n-2) - 7*a(n-4) + a(n-6), for n>6. (End)
a(2*n+1)^2 + (a(2*n+1)+1)^2 = A038761(n)^2 + 2^2. - Hermann Stamm-Wilbrandt, Aug 31 2014

Extensions

More terms from Harvey P. Dale, Feb 07 2011
More terms from Wesley Ivan Hurt, Aug 04 2014

A064784 Difference between n-th triangular number t(n) and the largest square <= t(n).

Original entry on oeis.org

0, 2, 2, 1, 6, 5, 3, 0, 9, 6, 2, 14, 10, 5, 20, 15, 9, 2, 21, 14, 6, 28, 20, 11, 1, 27, 17, 6, 35, 24, 12, 44, 32, 19, 5, 41, 27, 12, 51, 36, 20, 3, 46, 29, 11, 57, 39, 20, 0, 50, 30, 9, 62, 41, 19, 75, 53, 30, 6, 66, 42, 17, 80, 55, 29, 2, 69, 42, 14, 84, 56, 27, 100, 71, 41, 10, 87, 56
Offset: 1

Views

Author

Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 20 2001

Keywords

Comments

The second differences of a(n) - (a(n)-a(n-1))-(a(n-1)-a(n-2)) - give 2, -2, -1, 6, -6, -1, -1, 12, -12, -1, 16, -16, -1 ... 82k+2, 82k-2, -1, 82k+6, 82k-6, -1, -1, 82k+12, 82k-12, -1, 82k+16, -82k-16, -1, 82k+20, -82k-20, -1, -1, 82k+26, -82k-26, -1, 82k+30, -82k-30, -1, -1, 82k+36, -82k-36, -1, 82k+40, -82k-40, -1, 82k+44, -82k-44, -1, -1, 82k+50, -82k-50, -1, 82k+54, -82k-54, -1, -1, 82k+60, -82k-60, -1, 82k+64, -82k-64, -1, -1, 82k+70, -82k-70, -1, 82k+74, -82k-74, -1, 82k+78, -82k-78, -1, -1, ...

Examples

			n = 5: A000217(5) = 28, largest square below that is 25, so a(5) = 28 - 25 = 3.
		

Crossrefs

Cf. A001108, A076816, A128549, A230038. Unique values are in A230044.

Programs

  • Maple
    seq(n*(n+1)/2-floor(sqrt(n*(n+1)/2))^2,n=0..100);
  • Mathematica
    f[n_]:=n*(n+1)/2-Floor[Sqrt[n*(n+1)/2]]^2; lst={}; Do[AppendTo[lst,f[n]],{n,0,6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 17 2010 *)
    #-Floor[Sqrt[#]]^2&/@Accumulate[Range[100]] (* Harvey P. Dale, Oct 15 2014 *)
  • PARI
    { default(realprecision, 100); for (n=1, 1000, t=n*(n + 1)/2; a=t - floor(sqrt(t))^2; write("b064784.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 25 2009
    
  • Python
    from math import isqrt
    def A064784(n): return (m:=n*(n+1)>>1)-isqrt(m)**2 # Chai Wah Wu, Jun 01 2024

Formula

a(n) = n*(n+1)/2 - floor(sqrt(n*(n+1)/2))^2.
a(n) = A053186(A000217(n)). - R. J. Mathar, Sep 10 2016
a(A001108(n)) = 0. - Hugo Pfoertner, Jun 01 2024

Extensions

Definition corrected by Harry J. Smith, Sep 25 2009
Terms corrected by Harry J. Smith, Sep 25 2009

A123737 Partial sums of (-1)^floor(n*sqrt(2)).

Original entry on oeis.org

-1, 0, 1, 0, -1, 0, -1, -2, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 2, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, -2, -1, 0, -1, 0, 1, 0, -1, 0, -1, -2, -1, 0, -1, -2, -1, -2, -3, -2, -1, -2, -1, 0, -1, -2, -1, 0, -1, 0, 1, 0, -1, 0, -1, -2, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 2, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, -2, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0
Offset: 1

Views

Author

T. D. Noe, Oct 11 2006

Keywords

Comments

Conjecture: A001652(n) is the index of the first occurrence of n in sequence A123737, A001108(n) is the index of the first occurrence of -n in sequence A123737. - Vaclav Kotesovec, Jun 02 2015

Crossrefs

Cf. A123724 (sum for 2^(1/3)), A123738 (sum for Pi), A123739 (sum for e).

Programs

  • Magma
    [&+[(-1)^Floor(j*Sqrt(2)): j in [1..n]]: n in [1..130]]; // G. C. Greubel, Sep 05 2019
    
  • Maple
    ListTools:-PartialSums([seq((-1)^floor(n*sqrt(2)),n=1..100)]); # Robert Israel, Jun 02 2015
  • Mathematica
    Rest[FoldList[Plus,0,(-1)^Floor[Sqrt[2]*Range[120]]]]
    Accumulate[(-1)^Floor[Range[120]Sqrt[2]]] (* Harvey P. Dale, Jan 16 2012 *)
    (* The positions of the first occurrences of n and -n in this sequence: *) stab = Rest[FoldList[Plus,0,(-1)^Floor[Sqrt[2]*Range[1000000]]]]; Print[Table[FirstPosition[stab,n][[1]],{n,1,8}]]; Print[Table[FirstPosition[stab,-n][[1]],{n,1,8}]]; (* Vaclav Kotesovec, Jun 02 2015 *)
  • PARI
    a(n)=sum(i=1,n,(-1)^sqrtint(2*i^2)) \\ Charles R Greathouse IV, Feb 07 2013
    
  • Sage
    [sum((-1)^floor(j*sqrt(2)) for j in (1..n)) for n in (1..130)] # G. C. Greubel, Sep 05 2019

Formula

O'Bryant, Reznick, & Serbinowska show that |a(n)| <= k log n + 1, with k = 1/(2 log (1 + sqrt(2))), and further -a(n) > k log n + 0.78 infinitely often. - Charles R Greathouse IV, Feb 07 2013

A216162 Sequences A006452 and A216134 interlaced.

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 4, 9, 11, 26, 23, 55, 64, 154, 134, 323, 373, 900, 781, 1885, 2174, 5248, 4552, 10989, 12671, 30590, 26531, 64051, 73852, 178294, 154634, 373319, 430441, 1039176, 901273, 2175865, 2508794, 6056764, 5253004, 12681873, 14622323, 35301410
Offset: 0

Views

Author

Raphie Frank, Sep 07 2012

Keywords

Crossrefs

Cf. A000129.
For some k in n:
a(2n) = A006452 (k^2 - 1 is triangular).
a(2n + 1) = A216134 (T_k and 2T_k + 1 are triangular).
a(2n + 1) - a(2n) = A006451 (T_k + 1 is square).
a(2n + 1) + a(2n) = A124124 (T_k and (T_k - 1)/2 are triangular).
a(4n + 1) + a(4n + 2) = A001108 (T_k is square).
a(4n + 3) + a(4n + 4) = A001652 (T_k and 2T_k are triangular).
Sum(a(n)) - 1 = A048776 for even n (the second partial summation of the Pell numbers).

Programs

  • PARI
    Vec((-1-x^3+5*x^4-3*x^5-2*x^6+x^7-2*x^8+x^9)/((x-1)*(1+x)*(x^4-2*x^2-1)*(x^4+2*x^2-1))+O(x^99)) \\ Charles R Greathouse IV, Jun 12 2015

Formula

(a(2n) + a(2n - 1)) - (a(2n - 2) + a(2n - 3)) = A000129(n); n>1.
It follows that sqrt(2) = lim n --> infinity ((a(2n + 2) + a(2n + 1)) - (a(2n - 2) + a(2n - 3)))/((a(2n + 2) + a(2n + 1)) - (a(2n) + a(2n - 1))).
G.f. ( -1-x^3+5*x^4-3*x^5-2*x^6+x^7-2*x^8+x^9 ) / ( (x-1)*(1+x)*(x^4-2*x^2-1)*(x^4+2*x^2-1) ). - R. J. Mathar, Sep 08 2012

Extensions

Edited by N. J. A. Sloane, May 24 2021

A309507 Number of ways the n-th triangular number T(n) = A000217(n) can be written as the difference of two positive triangular numbers.

Original entry on oeis.org

0, 1, 1, 1, 3, 3, 1, 2, 5, 3, 3, 3, 3, 7, 3, 1, 5, 5, 3, 7, 7, 3, 3, 5, 5, 7, 7, 3, 7, 7, 1, 3, 7, 7, 11, 5, 3, 7, 7, 3, 7, 7, 3, 11, 11, 3, 3, 5, 8, 11, 7, 3, 7, 15, 7, 7, 7, 3, 7, 7, 3, 11, 5, 3, 15, 7, 3, 7, 15, 7, 5, 5, 3, 11, 11, 7, 15, 7, 3, 9, 9, 3, 7
Offset: 1

Views

Author

Alois P. Heinz, Aug 05 2019

Keywords

Comments

Equivalently, a(n) is the number of triples [n,k,m] with k>0 satisfying the Diophantine equation n*(n+1) + k*(k+1) - m*(m+1) = 0. Any such triple satisfies a triangle inequality, n+k > m. The n for which there is a triple [n,n,m] are listed in A053141. - Bradley Klee, Mar 01 2020; edited by N. J. A. Sloane, Mar 31 2020

Examples

			a(5) = 3: T(5) = T(6)-T(3) = T(8)-T(6) = T(15)-T(14).
a(7) = 1: T(7) = T(28)-T(27).
a(8) = 2: T(8) = T(13)-T(10) = T(36)-T(35).
a(9) = 5: T(9) = T(10)-T(4) = T(11)-T(6) = T(16)-T(13) = T(23)-T(21) = T(45)-T(44).
a(49) = 8: T(49) = T(52)-T(17) = T(61)-T(36) = T(94)-T(80) = T(127)-T(117) = T(178)-T(171) = T(247)-T(242) = T(613)-T(611) = T(1225)-T(1224).
The triples with n <= 16 are:
2, 2, 3
3, 5, 6
4, 9, 10
5, 3, 6
5, 6, 8
5, 14, 15
6, 5, 8
6, 9, 11
6, 20, 21
7, 27, 28
8, 10, 13
8, 35, 36
9, 4, 10
9, 6, 11
9, 13, 16
9, 21, 23
9, 44, 45
10, 8, 13
10, 26, 28
10, 54, 55
11, 14, 18
11, 20, 23
11, 65, 66
12, 17, 21
12, 24, 27
12, 77, 78
13, 9, 16
13, 44, 46
13, 90, 91
14, 5, 15
14, 11, 18
14, 14, 20
14, 18, 23
14, 33, 36
14, 51, 53
14, 104, 105
15, 21, 26
15, 38, 41
15, 119, 120
16, 135, 136. - _N. J. A. Sloane_, Mar 31 2020
		

Crossrefs

Cf. A000217, A001108, A046079 (the same for squares), A068194, A100821 (the same for primes for n>1), A309332.
See also A053141. The monotonic triples [n,k,m] with n <= k <= m are counted in A333529.

Programs

  • Maple
    with(numtheory): seq(tau(n*(n+1))-tau(n*(n+1)/2)-1, n=1..80); # Ridouane Oudra, Dec 08 2023
  • Mathematica
    TriTriples[TNn_] := Sort[Select[{TNn, (TNn + TNn^2 - # - #^2)/(2 #),
          (TNn + TNn^2 - # + #^2)/(2 #)} & /@
        Complement[Divisors[TNn (TNn + 1)], {TNn}],
       And[And @@ (IntegerQ /@ #), And @@ (# > 0 & /@ #)] &]]
    Length[TriTriples[#]] & /@ Range[100]
    (* Bradley Klee, Mar 01 2020 *)

Formula

a(n) = 1 <=> n in { A068194 } \ { 1 }.
a(n) is even <=> n in { A001108 } \ { 0 }.
a(n) = number of odd divisors of n*(n+1) (or, equally, of T(n)) that are greater than 1. - N. J. A. Sloane, Apr 03 2020
a(n) = A092517(n) - A063440(n) - 1. - Ridouane Oudra, Dec 08 2023

A001953 a(n) = floor((n + 1/2) * sqrt(2)).

Original entry on oeis.org

0, 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 53, 54, 55, 57, 58, 60, 61, 62, 64, 65, 67, 68, 70, 71, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 92, 94, 95
Offset: 0

Views

Author

Keywords

Comments

Let s(n) = zeta(3) - Sum_{k = 1..n} 1/k^3. Conjecture: for n >= 1, s(a(n)) < 1/n^2 < s(a(n)-1), and the difference sequence of A049473 consists solely of 0's and 1's, in positions given by the nonhomogeneous Beatty sequences A001954 and A001953, respectively. - Clark Kimberling, Oct 05 2014

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A001954.

Programs

  • Magma
    [Floor((2*n+1)/Sqrt(2)): n in [0..100]]; // G. C. Greubel, Nov 14 2019
    
  • Maple
    seq( floor((2*n+1)/sqrt(2)), n=0..100); # G. C. Greubel, Nov 14 2019
  • Mathematica
    Table[Floor[(n + 1/2) Sqrt[2]], {n, 0, 100}] (* T. D. Noe, Aug 17 2012 *)
  • PARI
    a(n)=floor((n+1/2)*sqrt(2))
    
  • PARI
    a(n)={sqrtint(2*n*(n+1))} \\ Andrew Howroyd, Oct 24 2019
    
  • Sage
    [floor((2*n+1)/sqrt(2)) for n in (0..100)] # G. C. Greubel, Nov 14 2019

Formula

From Ralf Steiner, Oct 23 2019: (Start)
a(n) = floor(2*sqrt(A000217(n))).
a(n) = A136119(n + 1) - 1.
a(n + 1) - a(n) is in {1,2}.
a(n + 3) - a(n) is in {4,5}. (End)

Extensions

More terms from Michael Somos, Apr 26 2000.

A175035 Offsets i such that i + n*(n+1)/2 is a perfect square for some positive integer n.

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 10, 13, 15, 16, 19, 21, 22, 24, 25, 26, 28, 30, 33, 34, 35, 36, 39, 43, 45, 46, 48, 49, 53, 54, 55, 58, 60, 61, 63, 64, 66, 71, 72, 75, 76, 78, 79, 80, 81, 85, 89, 90, 91, 93, 94, 97, 99, 100, 103, 105, 106, 108, 111, 114, 115, 116, 118, 120
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 10 2009

Keywords

Comments

The ansatz n*(n+1)/2+i=s^2 can be transformed into (2*n+1)^2-2*(2*s)^2 =1-8*i.
A necessary condition for solutions to this Diophantine equation is that D=2 is a quadratic residue of the squarefree part of 8*i-1 (see A057126).
A sufficient condition is then available by a sequence of tests on the continued fractions of a quadratic surd that originates from a solution of this congruence.
See Mollin and Matthews for details. - R. J. Mathar, Nov 16 2009

Crossrefs

Programs

  • Mathematica
    Take[Rest[Ceiling[Sqrt[#]]^2-#&/@Accumulate[Range[1000]]//Union],70] (* Harvey P. Dale, Sep 07 2019 *)
  • PARI
    is(n)=#bnfisintnorm(bnfinit(z^2-8),-8*n+1) /* Ralf Stephan, Oct 14 2013 */

Extensions

Extended by R. J. Mathar, Nov 26 2009

A229118 Distance from the n-th triangular number to the nearest square.

Original entry on oeis.org

0, 1, 2, 1, 1, 4, 3, 0, 4, 6, 2, 3, 9, 5, 1, 8, 9, 2, 6, 14, 6, 3, 13, 11, 1, 10, 17, 6, 6, 19, 12, 1, 15, 19, 5, 10, 26, 12, 4, 21, 20, 3, 15, 29, 11, 8, 28, 20, 0, 21, 30, 9, 13, 36, 19, 4, 28, 30, 6, 19, 42, 17, 9, 36, 29, 2, 26, 42, 14, 15, 45, 27, 3, 34, 41, 10, 22, 55, 24, 9, 43, 39, 5, 30, 55, 20, 16, 53, 36, 1
Offset: 1

Views

Author

Ralf Stephan, Sep 14 2013

Keywords

Comments

The maximum of a(n)/n appears to converge to sqrt(2)/2 (A010503), i.e. n*(n+1)/2 seems not more than n*sqrt(2)/2 distant from a square.
Some values don't seem to be in the sequence (checked up to n=10^7): 7,18,23,31,37,38...
Those values k are not in the sequence because the Pell-type equations x^2 - 8*y^2 = 8*k+1 and x^2 - 8*y^2 = -8*k+1 have no solutions. - Robert Israel, Apr 08 2019
a(A001108(n)) = 0, a(A229131(n)) = 1, a(A229083(n)) <= 1, a(A229133(n)) is square.

Crossrefs

Programs

  • Mathematica
    dns[n_]:=Module[{a=Floor[Sqrt[n]]^2,b=Ceiling[Sqrt[n]]^2},Min[n-a, b-n]]; dns/@Accumulate[Range[90]] (* Harvey P. Dale, Nov 07 2016 *)
  • PARI
    m=0;for(n=1, 100, t=n*(n+1)/2;s=sqrtint(t);d=min(t-s^2,(s+1)^2-t);print1(d, ","))
Previous Showing 21-30 of 63 results. Next