cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 424 results. Next

A065741 Largest square <= sum of squares of divisors of n.

Original entry on oeis.org

1, 4, 9, 16, 25, 49, 49, 81, 81, 121, 121, 196, 169, 225, 256, 324, 289, 441, 361, 529, 484, 576, 529, 841, 625, 841, 784, 1024, 841, 1296, 961, 1296, 1156, 1444, 1296, 1849, 1369, 1764, 1681, 2209, 1681, 2500, 1849, 2500, 2304, 2601, 2209, 3364, 2401
Offset: 1

Views

Author

Labos Elemer, Nov 15 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[Sqrt[DivisorSigma[2, w]]//N]^2, {w, 1, 100}]
  • PARI
    a(n) = { sqrtint(sigma(n,2))^2 } \\ Harry J. Smith, Oct 29 2009

Formula

a(n) = A048760(A001157(n)).

A067692 a(n) = Sum_{0 < d <= t <= n, d|n, t|n} d*t.

Original entry on oeis.org

1, 7, 13, 35, 31, 97, 57, 155, 130, 227, 133, 497, 183, 413, 418, 651, 307, 988, 381, 1155, 762, 953, 553, 2225, 806, 1307, 1210, 2093, 871, 3242, 993, 2667, 1762, 2183, 1802, 5096, 1407, 2705, 2418, 5155, 1723, 5858
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 04 2002

Keywords

Comments

Total area of all s X t rectangles, where the (s,t) are the pairs of divisors of n such that 1 <= s <= t. For example, when n = 4, the rectangles are 1 X 1, 1 X 2, 1 X 4, 2 X 2, 2 X 4, and 4 X 4, whose total area is a(4) = 1*1 + 1*2 + 1*4 + 2*2 + 2*4 + 4*4 = 35. - Wesley Ivan Hurt, Nov 15 2021

Examples

			a(6) = 1*1+1*2+1*3+1*6+2*2+2*3+2*6+3*3+3*6+6*6 = 1+2+3+6+4+6+12+9+18+36 = 97.
		

Crossrefs

Programs

Formula

a(n) = (1/2)*(sigma_1(n)^2 + sigma_2(n)), cf. A000203, A001157.
For p prime: a(p) = 1 + p + p^2, a(A000040(k)) = A060800(k).
Sum_{k=1..n} a(k) = (7/12)*zeta(3) * n^3 + O(n^2*log(n)^2). - Amiram Eldar, Dec 15 2023

A069153 a(n) = Sum_{d|n} d*(d-1)/2.

Original entry on oeis.org

0, 1, 3, 7, 10, 19, 21, 35, 39, 56, 55, 91, 78, 113, 118, 155, 136, 208, 171, 252, 234, 287, 253, 395, 310, 404, 390, 497, 406, 614, 465, 651, 586, 698, 626, 910, 666, 875, 822, 1060, 820, 1202, 903, 1239, 1144, 1289, 1081, 1643, 1197, 1581, 1414, 1736
Offset: 1

Views

Author

Benoit Cloitre, Apr 08 2002

Keywords

Comments

Inverse Mobius transform of A000217. - R. J. Mathar, Jan 19 2009

Examples

			x^2 + 3*x^3 + 7*x^4 + 10*x^5 + 19*x^6 + 21*x^7 + 35*x^8 + 39*x^9 + 56*x^10 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    seq((1/2)*(sigma[2](n) - sigma[1](n)), n = 1..100); # Peter Bala, Jan 21 2021
  • Mathematica
    A069153[n_]:=Plus@@Binomial[Divisors[n],2];Array[A069153,100] (* Enrique Pérez Herrero, Feb 21 2012 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d^2 - d) / 2)}
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 2) - sigma(f)) / 2; \\ Amiram Eldar, Jan 01 2025

Formula

G.f.: Sum_{k>0} x^(2*k)/(1-x^k)^3. - Vladeta Jovovic, Dec 17 2002
Row sums of triangle A134840. - Gary W. Adamson, Nov 12 2007
G.f. A(x) = (1/2) * x * d/dx log( B(x) ) where B() is g.f. for A052847. - Michael Somos, Feb 12 2008
G.f.: Sum_{k>0} ((k^2 - k) / 2) * x^k / (1 - x^k). - Michael Somos, Feb 12 2008
From Peter Bala, Jan 21 2021: (Start)
a(n) = (1/2)*(sigma_2(n) - sigma_1(n)) = (1/2)*(A001157(n) A000203(n)) = (1/2)*A086666.
G.f.: A(x) = (1/2)* Sum_{n >= 1} x^(n^2)*( n*(n-1)*x^(3*n) - (n^2 + n - 2)*x^(2*n) + n*(3 - n)*x^n + n*(n - 1) )/(1 - x^n)^3. - differentiate equation 5 in Arndt twice w.r.t x and set x = 1. (End)
From Amiram Eldar, Jan 01 2025: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-2) - zeta(s-1)) / 2.
Sum_{k=1..n} a(k) ~ (zeta(3)/6) * n^3. (End)

A351307 Sum of the squares of the square divisors of n.

Original entry on oeis.org

1, 1, 1, 17, 1, 1, 1, 17, 82, 1, 1, 17, 1, 1, 1, 273, 1, 82, 1, 17, 1, 1, 1, 17, 626, 1, 82, 17, 1, 1, 1, 273, 1, 1, 1, 1394, 1, 1, 1, 17, 1, 1, 1, 17, 82, 1, 1, 273, 2402, 626, 1, 17, 1, 82, 1, 17, 1, 1, 1, 17, 1, 1, 82, 4369, 1, 1, 1, 17, 1, 1, 1, 1394, 1, 1, 626, 17, 1, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2022

Keywords

Comments

Inverse Möbius transform of n^2 * c(n), where c(n) is the characteristic function of squares (A010052). - Wesley Ivan Hurt, Jun 20 2024

Examples

			a(16) = 273; a(16) = Sum_{d^2|16} (d^2)^2 = (1^2)^2 + (2^2)^2 + (4^2)^2 = 273.
		

Crossrefs

Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), this sequence (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), A351315 (k=10).
Cf. A010052, A247041 (zeta(5/2)), A008836, A001157.

Programs

  • Mathematica
    f[p_, e_] := (p^(4*(1 + Floor[e/2])) - 1)/(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 07 2022 *)
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, k^4*x^k^2/(1-x^k^2))) \\ Seiichi Manyama, Feb 12 2022
    
  • Python
    from math import prod
    from sympy import factorint
    def A351307(n): return prod((p**(4+((e&-2)<<1))-1)//(p**4-1) for p,e in factorint(n).items()) # Chai Wah Wu, Jul 11 2024

Formula

a(n) = Sum_{d^2|n} (d^2)^2.
Multiplicative with a(p) = (p^(4*(1+floor(e/2))) - 1)/(p^4 - 1). - Amiram Eldar, Feb 07 2022
G.f.: Sum_{k>0} k^4*x^(k^2)/(1-x^(k^2)). - Seiichi Manyama, Feb 12 2022
From Amiram Eldar, Sep 19 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-4).
Sum_{k=1..n} a(k) ~ (zeta(5/2)/5) * n^(5/2). (End)
a(n) = Sum_{d|n} d^2 * c(d), where c = A010052. - Wesley Ivan Hurt, Jun 20 2024
a(n) = Sum_{d|n} lambda(d)*d^2*sigma_2(n/d), where lambda = A008836. - Ridouane Oudra, Jul 18 2025

A013963 a(n) = sigma_15(n), the sum of the 15th powers of the divisors of n.

Original entry on oeis.org

1, 32769, 14348908, 1073774593, 30517578126, 470199366252, 4747561509944, 35185445863425, 205891146443557, 1000030517610894, 4177248169415652, 15407492847694444, 51185893014090758, 155572843119354936, 437893920912786408, 1152956690052710401, 2862423051509815794
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

  • Magma
    [DivisorSigma(15, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
    
  • Mathematica
    DivisorSigma[15, Range[30]] (* Vincenzo Librandi, Sep 10 2016 *)
  • PARI
    my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^15*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
    
  • PARI
    a(n) = sigma(n, 15); \\ Amiram Eldar, Oct 29 2023
  • Sage
    [sigma(n,15)for n in range(1,15)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^15*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-15)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(15*e+15)-1)/(p^15-1).
Sum_{k=1..n} a(k) = zeta(16) * n^16 / 16 + O(n^17). (End)

A013969 a(n) = sigma_21(n), the sum of the 21st powers of the divisors of n.

Original entry on oeis.org

1, 2097153, 10460353204, 4398048608257, 476837158203126, 21936961102828212, 558545864083284008, 9223376434903384065, 109418989141972712413, 1000000476837160300278, 7400249944258160101212, 46005141850728850805428, 247064529073450392704414, 1171356134499851307229224
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

Formula

G.f.: Sum_{k>=1} k^21*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Sum_{n>=1} a(n)/exp(2*Pi*n) = 77683/552 = Bernoulli(22)/44. - Vaclav Kotesovec, May 07 2023
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(21*e+21)-1)/(p^21-1).
Dirichlet g.f.: zeta(s)*zeta(s-21).
Sum_{k=1..n} a(k) = zeta(22) * n^22 / 22 + O(n^23). (End)

A066135 a(n) = least number m > 1 such that sigma_n(m) = k*m for some k.

Original entry on oeis.org

6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 194, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 228, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 194, 6, 10, 6
Offset: 1

Views

Author

Labos Elemer, Dec 06 2001

Keywords

Comments

a(n) <= 2p, where p = A002586(n) is the smallest prime factor of (1 + 2^n). (Proof. Since sigma_n(2p) = (1 + 2^n)(1 + p^n) and p is odd, 2p divides sigma_n(2p).) - Jonathan Sondow, Nov 23 2012

Crossrefs

Cf. A218860, A218861 (unique values and where they first occur).

Programs

  • Mathematica
    Table[m = 2; While[Mod[DivisorSigma[n, m], m] > 0, m++]; m, {n, 100}] (* T. D. Noe, Nov 23 2012 *)

Formula

Sum{d^n} = ka(n), d runs over the divisors of a(n), where k is an integer and a(n) is the smallest suitable number.

Extensions

Definition and formulas corrected by Jonathan Sondow, Nov 23 2012

A328259 a(n) = n * sigma_2(n).

Original entry on oeis.org

1, 10, 30, 84, 130, 300, 350, 680, 819, 1300, 1342, 2520, 2210, 3500, 3900, 5456, 4930, 8190, 6878, 10920, 10500, 13420, 12190, 20400, 16275, 22100, 22140, 29400, 24418, 39000, 29822, 43680, 40260, 49300, 45500, 68796, 50690, 68780, 66300, 88400, 68962, 105000, 79550, 112728, 106470
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 09 2019

Keywords

Comments

Moebius transform of A027847.

Crossrefs

Programs

  • Mathematica
    Table[n DivisorSigma[2, n], {n, 1, 45}]
    nmax = 45; CoefficientList[Series[Sum[k^3 x^k/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = n*sigma(n, 2); \\ Michel Marcus, Dec 02 2020

Formula

G.f.: Sum_{k>=1} k^3 * x^k / (1 - x^k)^2.
G.f.: Sum_{k>=1} k * x^k * (1 + 4 * x^k + x^(2*k)) / (1 - x^k)^4.
Dirichlet g.f.: zeta(s - 1) * zeta(s - 3).
Sum_{k=1..n} a(k) ~ zeta(3) * n^4 / 4. - Vaclav Kotesovec, Oct 09 2019
Multiplicative with a(p^e) = (p^(3*e+2) - p^e)/(p^2 - 1). - Amiram Eldar, Dec 02 2020
G.f.: Sum_{n >= 1} q^(n^2)*( n^4 - (2*n^4 - 4*n^3 - 3*n^2 - n)*q^n - (8*n^3 - 4*n)*q^(2*n) + (2*n^4 + 4*n^3 - 3*n^2 + n)*q^(3*n) - n^4*q^(4*n) )/(1 - q^n)^4. Apply the operator x*d/dx twice, followed by the operator q*d/dq once, to equation 5 in Arndt and then set x = 1. - Peter Bala, Jan 21 2021
a(n) = Sum_{k = 1..n} sigma_3( gcd(k, n) ) = Sum_{d divides n} sigma_3(d) * phi(n/d). - Peter Bala, Jan 19 2024
a(n) = Sum_{1 <= i, j, k <= n} sigma_1( gcd(i, j, k, n) ) = Sum_{d divides n} sigma_1(d) * J_3(n/d), where the Jordan totient function J_3(n) = A059376(n). - Peter Bala, Jan 22 2024

A007433 Inverse Moebius transform applied twice to squares.

Original entry on oeis.org

1, 6, 11, 27, 27, 66, 51, 112, 102, 162, 123, 297, 171, 306, 297, 453, 291, 612, 363, 729, 561, 738, 531, 1232, 678, 1026, 922, 1377, 843, 1782, 963, 1818, 1353, 1746, 1377, 2754, 1371, 2178, 1881, 3024, 1683
Offset: 1

Views

Author

Keywords

Comments

Dirichlet convolution of A001157 and A000012. Dirichlet convolution of A000005 and A000290 (Jovovic formula). - R. J. Mathar, Feb 03 2011
Sum of the squares of the divisors d1 from the ordered pairs of divisors of n, (d1,d2) with d1<=d2, such that d1|d2. - Wesley Ivan Hurt, Mar 22 2022

Examples

			G.f. = x + 6*x^2 + 11*x^3 + 27*x^4 + 27*x^5 + 66*x^6 + 51*x^7 + 112*x^8 + 102*x^9 + ... - _Michael Somos_, Jul 15 2018
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A134577.

Programs

  • Mathematica
    a[n_] := Plus @@ DivisorSigma[2, Divisors[n]]; Array[a, 41] (* Robert G. Wilson v, May 05 2010 *)
    a[ n_] := If[ n < 1, 0, Times @@ (If[ # == 1, 1, (#^(2 #2 + 4) - (#2 + 2) #^2 + #2 + 1) / (#^2 - 1)^2] & @@@ FactorInteger @ n)]; (* Michael Somos, Jul 15 2018 *)
  • PARI
    /* Dirichlet convolution of A001157, A000012 (Mathar): */
    a(n)=sumdiv(n, d, sigma(d,2))
    
  • PARI
    /* Dirichlet convolution of A000005, A000290 (Mathar): */
    a(n)=sumdiv(n, d, d^2*sigma(n/d,0))

Formula

a(n) = Sum_{d|n} d^2*tau(n/d). - Vladeta Jovovic, Jul 31 2002
Equals A134577 * [1, 2, 3, ...]. - Gary W. Adamson, Nov 02 2007
G.f.: Sum_{k>=1} sigma_2(k)*x^k/(1 - x^k), where sigma_2(k) is the sum of squares of divisors of k (A001157). - Ilya Gutkovskiy, Jan 16 2017
Dirichlet g.f.: zeta(s-2)*zeta(s)^2. - Benedict W. J. Irwin, Jul 14 2018
a(n) is multiplicative with a(p^e) = (p^(2*e + 4) - (e+2) * p^2 + e+1) / (p^2 - 1)^2. - Michael Somos, Jul 15 2018
Sum_{k=1..n} a(k) ~ Zeta(3)^2 * n^3 / 3. - Vaclav Kotesovec, Nov 04 2018

Extensions

a(38) corrected by Ilya Gutkovskiy, Jan 16 2016

A013960 a(n) = sigma_12(n), the sum of the 12th powers of the divisors of n.

Original entry on oeis.org

1, 4097, 531442, 16781313, 244140626, 2177317874, 13841287202, 68736258049, 282430067923, 1000244144722, 3138428376722, 8918294543346, 23298085122482, 56707753666594, 129746582562692, 281543712968705, 582622237229762, 1157115988280531, 2213314919066162
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

  • Magma
    [DivisorSigma(12, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
    
  • Mathematica
    DivisorSigma[12,Range[20]] (* Harvey P. Dale, Jan 28 2015 *)
  • PARI
    my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^12*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
    
  • PARI
    a(n) = sigma(n, 12); \\ Amiram Eldar, Oct 29 2023
  • Sage
    [sigma(n,12) for n in range(1,17)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^12*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-12)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(12*e+12)-1)/(p^12-1).
Sum_{k=1..n} a(k) = zeta(13) * n^13 / 13 + O(n^14). (End)
Previous Showing 91-100 of 424 results. Next