cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 73 results. Next

A015762 Numbers n such that phi(n) | sigma_4(n).

Original entry on oeis.org

1, 2, 3, 6, 249, 498
Offset: 1

Views

Author

Keywords

Comments

sigma_4(n) is the sum of the 4th powers of the divisors of n (A001159).
sigma_{8j+4}(x)/phi(x) is an integer for j=0..500, x=1,2,3,6,249,498, and this is conjectured to hold for possible larger terms of A015762 and all j. Compare with comments to A015759, A091285, A015770. - Labos Elemer, May 27 2004
For any odd n in this sequence, 2n is also in the sequence, since phi(2n) = phi(n) and sigma_4(2n) = 17 sigma_4(n). More generally, if gcd(m,n) = 1 and m and n both are in this sequence, then mn is also in the sequence. No odd prime > 3 can be in the sequence, since if p = 2r + 1, then sigma_4(p) = 8r(2r^3 + 4r^2 + 3r + 1) + 2 is divisible by phi(p) = 2r only for r = 1. The term a(5) = 3*83 is the only odd semiprime term with a factor < 10^5. - M. F. Hasler, Aug 21 2017
a(7) > 3*10^11, if it exists. - Giovanni Resta, Aug 23 2017

Crossrefs

Programs

  • Magma
    [n: n in [1..1000]| DivisorSigma(4, n) mod EulerPhi(n) eq 0]; // Vincenzo Librandi, Aug 22 2017
  • Mathematica
    Select[Range[500],Divisible[DivisorSigma[4,#],EulerPhi[#]]&] (* Harvey P. Dale, Dec 16 2012 *)
  • PARI
    select( is(n)=sigma(n,4)%eulerphi(n)==0, [1..10^4])  \\ M. F. Hasler, Aug 21 2017
    

A064607 Numbers k such that A064604(k) is divisible by k.

Original entry on oeis.org

1, 2, 7, 151, 257, 1823, 3048, 5588, 6875, 7201, 8973, 24099, 5249801, 9177919, 18926164, 70079434, 78647747, 705686794, 2530414370, 3557744074, 25364328389, 32487653727, 66843959963
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056650, A064605-A064607, A064610, A064611, A048290, A062982, A045345.
a(19) > 2*10^9. - Donovan Johnson, Jun 21 2010
a(24) > 10^11, if it exists. - Amiram Eldar, Jan 18 2024

Examples

			Adding 4th-power divisor-sums for j = 1..7 gives 1+17+82+273+626+1394+2402 = 4795 which is divisible by 7, so 7 is a term and the integer quotient is 655.
		

Crossrefs

Programs

  • Mathematica
    k = 1; lst = {}; s = 0; While[k < 1000000001, s = s + DivisorSigma[4, k]; If[ Mod[s, k] == 0, AppendTo[lst, k]; Print@ k]; k++]; lst (* Robert G.Wilson v, Aug 25 2011 *)

Formula

(Sum_{j=1..k} sigma_4(j)) mod k = A064604(k) mod k = 0.

Extensions

a(13)-a(18) from Donovan Johnson, Jun 21 2010
a(19)-a(23) from Amiram Eldar, Jan 18 2024

A066135 a(n) = least number m > 1 such that sigma_n(m) = k*m for some k.

Original entry on oeis.org

6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 194, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 228, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 194, 6, 10, 6
Offset: 1

Views

Author

Labos Elemer, Dec 06 2001

Keywords

Comments

a(n) <= 2p, where p = A002586(n) is the smallest prime factor of (1 + 2^n). (Proof. Since sigma_n(2p) = (1 + 2^n)(1 + p^n) and p is odd, 2p divides sigma_n(2p).) - Jonathan Sondow, Nov 23 2012

Crossrefs

Cf. A218860, A218861 (unique values and where they first occur).

Programs

  • Mathematica
    Table[m = 2; While[Mod[DivisorSigma[n, m], m] > 0, m++]; m, {n, 100}] (* T. D. Noe, Nov 23 2012 *)

Formula

Sum{d^n} = ka(n), d runs over the divisors of a(n), where k is an integer and a(n) is the smallest suitable number.

Extensions

Definition and formulas corrected by Jonathan Sondow, Nov 23 2012

A206623 G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^3).

Original entry on oeis.org

1, 2, 18, 88, 398, 1768, 7508, 30644, 121310, 467234, 1756080, 6457168, 23274788, 82381584, 286760344, 982874120, 3320800590, 11070619228, 36446345198, 118581503192, 381552358872, 1214868568728, 3829841265428, 11959828895612, 37013411304892, 113570015855642
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Comments

Convolution of A023872 and A248882. - Vaclav Kotesovec, Aug 19 2015

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 88*x^3 + 398*x^4 + 1768*x^5 + 7508*x^6 +...
where A(x) = (1+x)/(1-x) * (1+x^2)^8/(1-x^2)^8 * (1+x^3)^27/(1-x^3)^27 *...
Also, A(x) = Euler transform of [2,15,54,120,250,405,686,960,1458,...]:
A(x) = 1/((1-x)^2*(1-x^2)^15*(1-x^3)^54*(1-x^4)^120*(1-x^5)^250*(1-x^6)^405*...).
		

Crossrefs

Cf. A156616, A206622, A206624, A001159 (sigma_4).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
  • PARI
    {a(n)=polcoeff(prod(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))^(m^3)),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 4)-sigma(m, 4))/8*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=local(InvEulerGF=x*(2+15*x+46*x^2+60*x^3+46*x^4+15*x^5+2*x^6)/(1-x^2+x*O(x^n))^4);polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^polcoeff(InvEulerGF,k)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} (sigma_4(2*n) - sigma_4(n))/8 * x^n/n ), where sigma_4(n) is the sum of 4th powers of divisors of n (A001159).
Inverse Euler transform has g.f.: x*(2 + 15*x + 46*x^2 + 60*x^3 + 46*x^4 + 15*x^5 + 2*x^6)/(1-x^2)^4.
a(n) ~ (93*Zeta(5))^(59/600) * exp(5/4 * (93*Zeta(5)/2)^(1/5) * n^(4/5) + Zeta'(-3)) / (2^(59/100) * sqrt(5*Pi) * n^(359/600)), where Zeta(5) = A013663, Zeta'(-3) = A259068. - Vaclav Kotesovec, Aug 19 2015

A351309 Sum of the 4th powers of the square divisors of n.

Original entry on oeis.org

1, 1, 1, 257, 1, 1, 1, 257, 6562, 1, 1, 257, 1, 1, 1, 65793, 1, 6562, 1, 257, 1, 1, 1, 257, 390626, 1, 6562, 257, 1, 1, 1, 65793, 1, 1, 1, 1686434, 1, 1, 1, 257, 1, 1, 1, 257, 6562, 1, 1, 65793, 5764802, 390626, 1, 257, 1, 6562, 1, 257, 1, 1, 1, 257, 1, 1, 6562, 16843009, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2022

Keywords

Comments

Inverse Möbius transform of n^4 * c(n), where c(n) is the characteristic function of squares (A010052). - Wesley Ivan Hurt, Jun 29 2024

Examples

			a(16) = 65793; a(16) = Sum_{d^2|16} (d^2)^4 = (1^2)^4 + (2^2)^4 + (4^2)^4 = 65793.
		

Crossrefs

Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), this sequence (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), A351315 (k=10).

Programs

  • Mathematica
    f[p_, e_] := (p^(8*(1 + Floor[e/2])) - 1)/(p^8 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 07 2022 *)
    Table[Total[Select[Divisors[n],IntegerQ[Sqrt[#]]&]^4],{n,70}] (* Harvey P. Dale, Feb 11 2023 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquare(d), d^4)); \\ Michel Marcus, Jun 05 2024

Formula

a(n) = Sum_{d^2|n} (d^2)^4.
Multiplicative with a(p) = (p^(8*(1+floor(e/2))) - 1)/(p^8 - 1). - Amiram Eldar, Feb 07 2022
From Amiram Eldar, Sep 20 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-8).
Sum_{k=1..n} a(k) ~ (zeta(9/2)/9) * n^(9/2). (End)
G.f.: Sum_{k>=1} k^8 * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Jun 05 2024
a(n) = Sum_{d|n} d^4 * c(d), where c = A010052. - Wesley Ivan Hurt, Jun 29 2024
a(n) = Sum_{d|n} lambda(d)*d^4*sigma_4(n/d), where lambda = A008836. - Ridouane Oudra, Jul 19 2025

A073570 G.f.: Sum_{n >= 1} x^n/(1-x^n)^5.

Original entry on oeis.org

1, 6, 16, 41, 71, 147, 211, 371, 511, 791, 1002, 1547, 1821, 2596, 3146, 4247, 4846, 6627, 7316, 9681, 10852, 13657, 14951, 19427, 20546, 25577, 27916, 34096, 35961, 44912, 46377, 56607, 59922, 70896, 74096, 90278, 91391, 108591, 113766, 133421
Offset: 1

Views

Author

Vladeta Jovovic, Aug 31 2002

Keywords

Comments

Inverse Moebius transform of pentatope numbers. - Jonathan Vos Post, Mar 31 2006

Crossrefs

Programs

  • Mathematica
    Table[(DivisorSigma[4,n]+6*DivisorSigma[3,n]+11*DivisorSigma[2,n]+ 6*DivisorSigma[ 1,n])/24,{n,40}] (* Harvey P. Dale, Aug 08 2013 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+3, 4)); \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+3, 4)*x^k/(1-x^k))) \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 4) + 6*sigma(f, 3) + 11*sigma(f, 2) + 6*sigma(f)) / 24; \\ Amiram Eldar, Dec 30 2024

Formula

a(n) = (1/24) * (sigma_4(n) + 6*sigma_3(n) + 11*sigma_2(n) + 6*sigma_1(n)).
a(n) = Sum_{d|n} (d+1)*(d+2)*(d+3)*(d+4)/24 = Sum_{d|n} C(d+3,4) = Sum_{d|n} A000332(d+3). - Jonathan Vos Post, Mar 31 2006. Corrected by Joshua Zucker, May 04 2007
From Amiram Eldar, Dec 30 2024: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-4) + 6*zeta(s-3) + 11*zeta(s-2) + 6*zeta(s-2)) / 24.
Sum_{k=1..n} a(k) ~ (zeta(5)/120) * n^5. (End)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 31 2007

A082245 Sum of (n-1)-th powers of divisors of n.

Original entry on oeis.org

1, 3, 10, 73, 626, 8052, 117650, 2113665, 43053283, 1001953638, 25937424602, 743375541244, 23298085122482, 793811662272744, 29192932133689220, 1152956690052710401, 48661191875666868482, 2185928253847184914509
Offset: 1

Views

Author

Reinhard Zumkeller, May 22 2003

Keywords

Comments

a(n) = t(n,n-1), t as defined in A082771;
a(1)=A000005(1), a(2)=A000203(2), a(3)=A001157(3), a(4)=A001158(4), a(5)=A001159(5), a(6)=A001160(6), a(7)=A013954(7), a(8)=A013955(8).

Examples

			a(6) = 1^5 + 2^5 + 3^5 + 6^5 = 1 + 32 + 243 + 7776 = 8052.
		

Crossrefs

Programs

  • Magma
    [DivisorSigma(n-1, n): n in [1..20]]; // G. C. Greubel, Nov 02 2018
  • Mathematica
    Table[Total[Divisors[n]^(n-1)], {n,18}] (* T. D. Noe, Oct 25 2006 *)
    Table[DivisorSigma[n-1,n], {n,1,20}] (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    a(n) = sigma(n, n-1); \\ Michel Marcus, Nov 07 2017
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(1/k^2))))) \\ Seiichi Manyama, Jun 23 2019
    
  • Sage
    [sigma(n,(n-1))for n in range(1,19)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^(k-1)*x^k/(1 - (k*x)^k). - Ilya Gutkovskiy, Nov 02 2018
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^(1/k^2)) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 23 2019
Limit_{n->oo} a(n)/A023887(n-1) = e (A001113) (Sugunamma, 1960). - Amiram Eldar, Apr 15 2021

Extensions

Corrected by T. D. Noe, Oct 25 2006

A101289 Inverse Moebius transform of 5-simplex numbers A000389.

Original entry on oeis.org

1, 7, 22, 63, 127, 280, 463, 855, 1309, 2135, 3004, 4704, 6189, 9037, 11776, 16359, 20350, 27901, 33650, 44695, 53614, 68790, 80731, 103776, 118882, 148701, 171220, 210469, 237337, 292292, 324633, 393351, 438922, 522298, 576346, 690333, 749399
Offset: 1

Views

Author

Jonathan Vos Post, Mar 31 2006

Keywords

Comments

From Georg Fischer, Aug 06 2025: (Start)
The general pattern is a(n) = Sum_{d|n} (Product_{k=0..m-1} d+k)/m! = Sum_{d|n} binomial(d+m-1, m) = Sum{d|n} Axxxxxx(d), with:
m Axxxxxx resulting sequence
------------------------------
5 A000389 A101289 (this sequence)
The other formulas generalize correspondingly.
A116989 uses A000579 and m=6 within a modified formula.
(End)

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, binomial(d+4, 5)); \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+4, 5)*x^k/(1-x^k))) \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    a(n) = my(f = factor(n));  (sigma(f, 5) + 10*sigma(f, 4) + 35*sigma(f, 3) + 50*sigma(f, 2) + 24*sigma(f))/120; \\ Amiram Eldar, Dec 30 2024

Formula

a(n) = Sum_{d|n} d*(d+1)*(d+2)*(d+3)*(d+4)/120 = Sum_{d|n} C(d+4,5) = Sum{d|n} A000389(d) = Sum_{d|n} (d^5+10*d^4+35*d^3+50*d^2+24*d)/120.
G.f.: Sum_{k>=1} x^k/(1 - x^k)^6 = Sum_{k>=1} binomial(k+4,5) * x^k/(1 - x^k). - Seiichi Manyama, Apr 19 2021
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_5(n) + 10*sigma_4(n) + 35*sigma_3(n) + 50*sigma_2(n) + 24*sigma_1(n)) / 120.
Dirichlet g.f.: zeta(s) * (zeta(s-5) + 10*zeta(s-4) + 35*zeta(s-3) + 50*zeta(s-2) + 24*zeta(s-1)) / 120.
Sum_{k=1..n} a(k) ~ (zeta(6)/720) * n^6. (End)

A301542 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_4(k)).

Original entry on oeis.org

1, 1, 18, 100, 526, 2546, 12953, 60929, 282194, 1265959, 5580958, 24057117, 101922204, 424244720, 1739362261, 7027590168, 28017627428, 110295521903, 429110693519, 1650961520518, 6285554480496, 23693047787961, 88469251486817, 327380976530282, 1201122749057307
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), A275585 (m=2), A288391 (m=3), this sequence (m=4), A301543 (m=5), A301544 (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[4, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2^(3/2) * 3^(2/3) * Pi * (Zeta(5)/7)^(1/6) * n^(5/6)/5 + Pi * (7/Zeta(5))^(1/6) * n^(1/6) / (240 * sqrt(2) * 3^(2/3)) - 3*Zeta(5) / (8*Pi^4)) * Zeta(5)^(1/12) / (2^(3/4) * 3^(2/3) * 7^(1/12) * n^(7/12)).
G.f.: exp(Sum_{k>=1} sigma_5(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A343499 a(n) = Sum_{k=1..n} gcd(k, n)^5.

Original entry on oeis.org

1, 33, 245, 1058, 3129, 8085, 16813, 33860, 59541, 103257, 161061, 259210, 371305, 554829, 766605, 1083528, 1419873, 1964853, 2476117, 3310482, 4119185, 5315013, 6436365, 8295700, 9778145, 12253065, 14468481, 17788154, 20511177, 25297965, 28629181, 34672912, 39459945, 46855809
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Crossrefs

Programs

  • Magma
    A343499:= func< n | (&+[d^5*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
    [A343499(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
    
  • Mathematica
    a[n_] := Sum[GCD[k, n]^5, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
    f[p_, e_] := p^(e-1)*(p^(4*e+5) - p^(4*e) - p + 1)/(p^4-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^5);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^5);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 4));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+26*x^k+66*x^(2*k)+26*x^(3*k)+x^(4*k))/(1-x^k)^6))
    
  • SageMath
    def A343499(n): return sum(k^5*euler_phi(n/k) for k in (1..n) if (k).divides(n))
    [A343499(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024

Formula

a(n) = Sum_{d|n} phi(n/d) * d^5.
a(n) = Sum_{d|n} mu(n/d) * d * sigma_4(d).
G.f.: Sum_{k >= 1} phi(k) * x^k * (1 + 26*x^k + 66*x^(2*k) + 26*x^(3*k) + x^(4*k))/(1 - x^k)^6.
Dirichlet g.f.: zeta(s-1) * zeta(s-5) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
Sum_{k=1..n} a(k) ~ 315*zeta(5)*n^6 / (2*Pi^6). - Vaclav Kotesovec, May 20 2021
Multiplicative with a(p^e) = p^(e-1)*(p^(4*e+5) - p^(4*e) - p + 1)/(p^4-1). - Amiram Eldar, Nov 22 2022
a(n) = Sum_{1 <= i_1, ..., i_5 <= n} gcd(i_1, ..., i_5, n) = Sum_{d divides n} d * J_5(n/d), where the Jordan totient function J_5(n) = A059378(n). - Peter Bala, Jan 29 2024
Previous Showing 11-20 of 73 results. Next