cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A065919 Bessel polynomial y_n(4).

Original entry on oeis.org

1, 5, 61, 1225, 34361, 1238221, 54516085, 2836074641, 170218994545, 11577727703701, 880077524475821, 73938089783672665, 6803184337622361001, 680392371852019772765, 73489179344355757819621, 8525425196317119926848801, 1057226213522667226687070945
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2001

Keywords

Comments

Main diagonal of A143411. - Peter Bala, Aug 14 2008

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Cf. A143411 (main diagonal), A143412.
Polynomial coefficients are in A001498.

Programs

  • Magma
    A065919:= func< n | (&+[Binomial(n,k)*Factorial(n+k)*2^k/Factorial(n): k in [0..n]]) >;
    [A065919(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    seq(simplify(2^n*KummerU(-n,-2*n,1/2)), n=0..16); # Peter Luschny, May 10 2022
  • Mathematica
    Table[Sum[(n+k)!*2^k/((n-k)!*k!), {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Jul 22 2015 *)
  • PARI
    for (n=0, 100, if (n>1, a=4*(2*n - 1)*a1 + a2; a2=a1; a1=a, if (n, a=a1=5, a=a2=1)); write("b065919.txt", n, " ", a) ) \\ Harry J. Smith, Nov 04 2009
    
  • PARI
    a(n) = sum(k=0,n, (n+k)!*2^k/((n-k)!*k!) ); \\ Joerg Arndt, May 17 2013
    
  • SageMath
    def A065919(n): return sum(binomial(n,k)*factorial(n+k)*2^k/factorial(n) for k in range(n+1))
    [A065919(n) for n in range(31)] # G. C. Greubel, Oct 05 2023

Formula

y_n(x) = Sum_{k=0..n} (n+k)!*(x/2)^k/((n-k)!*k!).
From Peter Bala, Aug 14 2008: (Start)
Recurrence relation: a(0) = 1, a(1) = 5, a(n) = 4*(2*n-1)*a(n-1) + a(n-2) for n >= 2. Sequence A143412(n) satisfies the same recurrence relation.
1/sqrt(e) = 1 - 2*Sum_{n = 0..inf} (-1)^n/(a(n)*a(n+1)) = 1 - 2*( 1/(1*5) - 1/(5*61) + 1/(61*1225) - ... ). (End)
G.f.: 1/Q(0), where Q(k)= 1 - x - 4*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = exp(1/4)/sqrt(2*Pi)*BesselK(n+1/2,1/4). - Gerry Martens, Jul 22 2015
a(n) ~ 2^(3*n+1/2) * n^n / exp(n-1/4). - Vaclav Kotesovec, Jul 22 2015
From Peter Bala, Apr 12 2017: (Start)
a(n) = 1/n!*Integral_{x = 0..inf} x^n*(1 + 2*x)^n dx.
E.g.f.: d/dx( exp(x*c(2*x)) ) = 1 + 5*x + 61*x^2/2! + 1225*x^3/3! + ..., where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
G.f.: (1/(1-x))*hypergeometric2f0(1,1/2; - ; 8*x/(1-x)^2). - G. C. Greubel, Aug 16 2017
a(n) = 2^n*KummerU(-n, -2*n, 1/2). - Peter Luschny, May 10 2022

A099022 a(n) = Sum_{k=0..n} C(n,k)*(2*n-k)!.

Original entry on oeis.org

1, 3, 38, 1158, 65304, 5900520, 780827760, 142358474160, 34209760152960, 10478436416945280, 3984884716852972800, 1842169367191937414400, 1017403495472574045158400, 661599650478455071589606400, 500354503197888042597961267200, 435447353708763072625260119808000
Offset: 0

Views

Author

Ralf Stephan, Sep 23 2004

Keywords

Comments

Diagonal of Euler-Seidel matrix with start sequence n!.
Number of ways to use the elements of {1,..,k}, n<=k<=2n, once each to form a sequence of n lists, each having length 1 or 2. - Bob Proctor, Apr 18 2005, Jun 26 2006
Replace "lists" by "sets": A105749.

Crossrefs

Cf. A001517, A076571, A082765 (binomial transform), A105749, row sums of A328826.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n)=2*n*(2*n-1)*a(n-1)+n*(n-1)*a(n-2), a(0)=1,a(1)=3},a(n),remember):
    map(f, [$0..20]); # Robert Israel, Feb 15 2017
  • Mathematica
    Table[(2k)! Hypergeometric1F1[-k, -2k, 1], {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
    Table[Sum[Binomial[n,k](2n-k)!,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Nov 22 2021 *)
  • PARI
    for(n=0,25, print1(sum(k=0,n, binomial(n,k)*(2*n-k)!), ", ")) \\ G. C. Greubel, Dec 31 2017

Formula

T(2*n, n), where T is the triangle in A076571.
a(n) = n!*A001517(n).
A082765(n) = Sum[C(n, k)*a(k), 0<=k<=n].
a(n) = 2*n*(2*n-1)*a(n-1)+n*(n-1)*a(n-2). - Vladeta Jovovic, Sep 27 2004
a(n) = int {x = 0..inf} exp(-x)*(x + x^2)^n dx. Applying the results of Nicolaescu, Section 3.2 to this integral we obtain the asymptotic expansion a(n) ~ (2*n)!*exp(1/2)*( 1 - 1/(16*n) - 191/(6144*n^2) + O(1/n^3) ). - Peter Bala, Jul 07 2014

A113025 Triangle of integer coefficients of polynomials P(n,x) of degree n, and falling powers of x, arising in diagonal Padé approximation of exp(x).

Original entry on oeis.org

1, 1, 2, 1, 6, 12, 1, 12, 60, 120, 1, 20, 180, 840, 1680, 1, 30, 420, 3360, 15120, 30240, 1, 42, 840, 10080, 75600, 332640, 665280, 1, 56, 1512, 25200, 277200, 1995840, 8648640, 17297280, 1, 72, 2520, 55440, 831600, 8648640, 60540480, 259459200
Offset: 0

Views

Author

Benoit Cloitre, Jan 03 2006

Keywords

Comments

exp(x) is well approximated by P(n,x)/P(n,-x). (P(n,1)/P(n,-1))_{n>=0} is a sequence of convergents to e: i.e., P(n,1) = A001517(n) and P(n,-1) = abs(A002119(n)).
From Roger L. Bagula, Feb 15 2009: (Start)
The row polynomials in rising powers of x are y_n(2*x) = Sum_{k=0..n} binomial(n+k, 2*k)*((2*k)!/k!)*x^k, for n >= 0, with the Bessel polynomials y_n(x) of Krall and Frink, eq. (3), (see also Grosswald, p. 18, eq. (7) and Riordan, p. 77). For the coefficients see A001498. [Edited by Wolfdieter Lang, May 11 2018]
P(n, x) = Sum_{k=0..n} (n+k)!/(k!*(n-k)!)*x^(n-k).
Row sums are A001517. (End)

Examples

			P(3,x) = x^3 + 12*x^2 + 60*x + 120.
y_3(2*x) = 1 + 12*x + 60*x^2 + 120*x^3. (Bessel with x -> 2*x).
From _Roger L. Bagula_, Feb 15 2009: (Start)
{1},
{1, 2},
{1, 6, 12},
{1, 12, 60, 120},
{1, 20, 180, 840, 1680},
{1, 30, 420, 3360, 15120, 30240},
{1, 42, 840, 10080, 75600, 332640, 665280},
{1, 56, 1512, 25200, 277200, 1995840, 8648640, 17297280},
{1, 72, 2520, 55440, 831600, 8648640, 60540480, 259459200, 518918400},
{1, 90, 3960, 110880, 2162160, 30270240, 302702400, 2075673600, 8821612800, 17643225600},
{1, 110, 5940, 205920, 5045040, 90810720, 1210809600, 11762150400, 79394515200, 335221286400, 670442572800} (End)
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p.77, 10. [From Roger L. Bagula, Feb 15 2009]

Crossrefs

Cf. A001498, A001517, A303986 (signed version).

Programs

  • Maple
    T := (n, k) -> pochhammer(n+1, k)*binomial(n, k):
    seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, May 11 2018
  • Mathematica
    L[n_, m_] = (n + m)!/((n - m)!*m!);
    Table[Table[L[n, m], {m, 0, n}], {n, 0, 10}];
    Flatten[%] (* Roger L. Bagula, Feb 15 2009 *)
    P[x_, n_] := Sum[ (2*n - k)!/(k!*(n - k)!)*x^(k), {k, 0, n}]; Table[Reverse[CoefficientList[P[x, n], x]], {n,0,10}] // Flatten (* G. C. Greubel, Aug 15 2017 *)
  • PARI
    T(n,k)=(n+k)!/k!/(n-k)!

Formula

From Wolfdieter Lang, May 11 2018: (Start)
T(n, k) = binomial(n+k, 2*k)*(2*k)!/k! = (n+k)!/((n-k)!*k!), n >= 0, k = 0..n. (see the R. L. Baluga comment above).
Recurrence (adapted from A001498, see the Grosswald reference): For n >= 0, k = 0..n: a(n, k) = 0 for n < k (zeros not shown in the triangle), a(n, -1) = 0, a(0, 0) = 1 = a(1, 0) and otherwise a(n, k) = 2*(2*n-1)*a(n-1, k-1) + a(n-2, k).
(End)
T(n, k) = Pochhammer(n+1, k)*binomial(n, k). # Peter Luschny, May 11 2018

A053987 Numerators of successive convergents to tan(1/2) using continued fraction 1/(2-1/(6-1/(10-1/(14-1/(18-1/(22-1/(26-1/30-...))))))).

Original entry on oeis.org

1, 6, 59, 820, 14701, 322602, 8372951, 250865928, 8521068601, 323549740910, 13580568049619, 624382580541564, 31205548459028581, 1684475234207001810, 97668358035547076399, 6053753722969711734928, 399450077357965427428849, 27955451661334610208284502
Offset: 1

Views

Author

Vladeta Jovovic, Apr 03 2000

Keywords

Crossrefs

Programs

  • Magma
    A053987:= func< n| &+[(-1)^k*Factorial(2*n-2*k-1)/(Factorial(n-2*k-1)* Factorial(2*k+1)): k in [0..Floor((n-1)/2)]] >;
    [A053987(n) : n in [1..20]]; // G. C. Greubel, May 17 2020
  • Maple
    A053987 := n -> local k; add((-1)^k*(2*n-2*k-1)!/((n-2*k-1)!*(2*k+1)!), k = 0..floor((n-1)/2)); seq(A053987(n), n = 1..20); # G. C. Greubel, May 17 2020
  • Mathematica
    Rest[CoefficientList[Series[Sin[(1-Sqrt[1-4*x])/2]/Sqrt[1-4*x], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Feb 25 2014 *)
  • PARI
    a(n)=sum(k=0,floor((n-1)/2),(-1)^k*(2*n-2*k-1)!/(n-2*k-1)!/(2*k+1)!) \\ Benoit Cloitre, Jan 03 2006
    
  • Sage
    def A053987(n):
        return 4^n*gamma(n+1/2)*hypergeometric([1/2-n/2, 1-n/2], [3/2, 1/2-n, 1-n], -1/4)/sqrt(4*pi)
    [round(A053987(n).n(100)) for n in (1..18)] # Peter Luschny, Sep 10 2014
    

Formula

a(n) = Sum_{k=0..floor((n-1)/2)} (-1)^k*(2*n-2*k-1)!/((n-2*k-1)! * (2*k+1)!). - Benoit Cloitre, Jan 03 2006
E.g.f.: 1-cos(x*C(x)), C(x)=(1-sqrt(1-4*x))/(2*x) (A000108). - Vladimir Kruchinin, Aug 10 2010
From Peter Bala, Aug 01 2013, (Start)
a(n+1) = (4*n+2)*a(n) - a(n-1) with a(0) = 0 and a(1) = 1.
a(n) = Sum_{k = 0..floor((n-1)/2)} (-1)^k*4^(n-2*k-1)*(n-2*k-1)!*binomial(n-k-1, k)*binomial(n-k-1/2, k+1/2), see A058798. (End)
a(n) ~ sin(1/2) * 2^(2*n+1/2) * n^n / exp(n). - Vaclav Kotesovec, Feb 25 2014
a(n) = 4^n*Gamma(n+1/2)*hypergeometric([1/2-n/2,1-n/2], [3/2,1/2-n,1-n], -1/4)/sqrt(4*Pi). - Peter Luschny, Sep 10 2014

Extensions

a(16)-a(17) from Wesley Ivan Hurt, Feb 28 2014

A304788 Expansion of e.g.f. exp(Sum_{k>=1} binomial(2*k,k)*x^k/(k + 1)!).

Original entry on oeis.org

1, 1, 3, 12, 59, 343, 2295, 17307, 144751, 1326377, 13189945, 141271298, 1619488645, 19766050827, 255693112641, 3492065507376, 50180426293255, 756444290843433, 11930511611596861, 196404976143077964, 3367697323914503113, 60029614473492823771, 1110430594720934758781
Offset: 0

Views

Author

Ilya Gutkovskiy, May 18 2018

Keywords

Comments

Exponential transform of A000108.

Examples

			E.g.f.: A(x) = 1 + x/1! + 3*x^2/2! + 12*x^3/3! + 59*x^4/4! + 343*x^5/5! + 2295*x^6/6! + 17307*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(exp(add(binomial(2*k,k)*x^k/(k+1)!,k=1..100)),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[Sum[CatalanNumber[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Exp[2 x] (BesselI[0, 2 x] - BesselI[1, 2 x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[CatalanNumber[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: exp(Sum_{k>=1} A000108(k)*x^k/k!).
E.g.f.: exp(exp(2*x)*(BesselI(0,2*x) - BesselI(1,2*x)) - 1).

A079165 a(n) = (4n-2)*a(n-1)+a(n-2) with a(0)=1 and a(1)=2.

Original entry on oeis.org

1, 2, 13, 132, 1861, 33630, 741721, 19318376, 580293001, 19749280410, 751052948581, 31563973120812, 1452693816505933, 72666254798417462, 3925430452931048881, 227747632524799252560, 14124278646990484707601
Offset: 0

Views

Author

Henry Bottomley, Dec 31 2002

Keywords

Examples

			a(3) = (4*3-2)*a(2)+a(1) = 10*13+2 = 132.
		

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n)=(4*n-2)*a(n-1)+a(n-2),a(0)=1,a(1)=2},a(n),remember):
    map(f, [$0..50]); # Robert Israel, May 03 2016
  • Mathematica
    a[n_] := Sum[(2n-2k)!/((n-2k)! (2k)!), {k, 0, n/2}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 10 2019, after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum((2*n-2*k)!/((n-2*k)!*(2*k)!),k,0,n/2); /* Vladimir Kruchinin, May 03 2016 */

Formula

a(n) = (A001517(n)+|A002119(n)|)/2 = A079166(2, n). a(n)/|A002119(n)| tends to 1.8591409...=(e+1)/2; a(n)/A001517(n) tends to 0.68393972...=2e/(e+1).
E.g.f.: cosh((1-sqrt(1-4*x))/2)/sqrt(1-4*x). - Vladimir Kruchinin, May 03 2016
a(n) = Sum_{k=0..n/2}((2*n-2*k)!/((n-2*k)!*(2*k)!)). - Vladimir Kruchinin, May 03 2016
a(n) = ((-1)^n*sqrt(Pi*exp(-1))*BesselI((2*n+1)/2, 1/2))/2 + (BesselK((2*n+1)/2, 1/2)*cosh(1/2))/sqrt(Pi), where BesselI(n,x) is the modified Bessel function of the first kind, BesselK(n,x) is the modified Bessel function of the second kind. - Ilya Gutkovskiy, May 03 2016
a(n) = (hypergeom([-n,n+1],[],-1)+(-1)^n*hypergeom([-n,n+1],[],1))/2. - Peter Luschny, May 03 2016

A105747 Number of ways to use the elements of {1,..,k}, 0<=k<=2n, once each to form a collection of n (possibly empty) lists, each of length at most 2.

Original entry on oeis.org

1, 4, 23, 216, 2937, 52108, 1136591, 29382320, 877838673, 29753600404, 1127881002535, 47278107653768, 2171286661012617, 108417864555606300, 5847857079417024031, 338841578119273846112
Offset: 0

Views

Author

Robert A. Proctor (www.math.unc.edu/Faculty/rap/), Apr 18 2005

Keywords

Examples

			a(2)=23:
{(),()},
{(),(1)},
{(),(1,2)},
{(),(2,1)},
{(1),(2)},
{(1),(2,3)},
{(1),(3,2)},
...,
{(1,4),(2,3)},
{(1,4),(3,2)},
{(4,1),(2,3)},
{(4,1),(3,2)}.
		

Crossrefs

First differences: A001517.
Replace "collection" by "sequence": A082765.
Replace "lists" by "sets": A105748.

Programs

  • Mathematica
    Table[Sum[(k+i)!/i!/(k-i)!, {k, 0, n}, {i, 0, k}], {n, 0, 20}]

Formula

a(n) = Sum_{0<=i<=k<=n} (k+i)!/i!/(k-i)!.
a(n+3) = (4*n+11)*a(n+2) - (4*n+9)*a(n+1) - a(n) - Benoit Cloitre, May 26 2006
G.f.: 1/(1-x)/Q(0), where Q(k)= 1 - x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) ~ 2^(2*n + 1/2) * n^n / exp(n - 1/2). - Vaclav Kotesovec, May 15 2022

A119274 Triangle of coefficients of numerators in Padé approximation to exp(x).

Original entry on oeis.org

1, 2, 1, 12, 6, 1, 120, 60, 12, 1, 1680, 840, 180, 20, 1, 30240, 15120, 3360, 420, 30, 1, 665280, 332640, 75600, 10080, 840, 42, 1, 17297280, 8648640, 1995840, 277200, 25200, 1512, 56, 1, 518918400, 259459200, 60540480, 8648640, 831600, 55440, 2520
Offset: 0

Views

Author

Paul Barry, May 12 2006

Keywords

Comments

n-th numerator of Padé approximation is (1/n!)*sum{j=0..n, C(n,j)(2n-j)!x^j}. Reversal of A113025. Row sums are A001517. First column is A001813. Inverse is A119275.
Also the Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+2) (A001813) adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265606. - Peter Luschny, Dec 31 2015
Dividing each diagonal by its initial element generates A054142. - Tom Copeland, Oct 10 2016

Examples

			Triangle begins
1,
2, 1,
12, 6, 1,
120, 60, 12, 1,
1680, 840, 180, 20, 1,
30240, 15120, 3360, 420, 30, 1
		

Crossrefs

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> (2*n)!/n!, 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[(2#)!/#!&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
  • Sage
    # uses[bell_transform from A264428]
    # Adds a column 1,0,0,0,... at the left side of the triangle.
    def A119274_row(n):
        multifact_4_2 = lambda n: prod(4*k + 2 for k in (0..n-1))
        mfact = [multifact_4_2(k) for k in (0..n)]
        return bell_transform(n, mfact)
    [A119274_row(n) for n in (0..9)] # Peter Luschny, Dec 31 2015

Formula

Number triangle T(n,k) = C(n,k)(2n-k)!/n!.
After adding a leading column (1,0,0,0,...), the triangle gives the coefficients of the Sheffer associated sequence (binomial-type polynomials) for the delta (lowering) operator D(1-D) with e.g.f. exp[ x * (1 - sqrt(1-4t)) / 2 ] . See Mathworld on Sheffer sequences. See A134685 for relation to Catalan numbers. - Tom Copeland, Feb 09 2008

A250917 Expansion of e.g.f. exp( x*C(x)^3 ) where C(x) = (1 - sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers, A000108.

Original entry on oeis.org

1, 1, 7, 73, 1033, 18541, 403831, 10351237, 305355793, 10192132153, 379819484551, 15634219476481, 704566985120857, 34506514429777573, 1825081888365736183, 103685565729559782781, 6297505655719537293601, 407233553972252986277617, 27935786938445348562454663
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Comments

In general, if k>0 and e.g.f. = exp(x*C(x)^k) where C(x) = (1 - sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers, then a(n) ~ k * 2^(2*n + k - 5/2) * n^(n-1) / exp(n - 2^(k-2)). - Vaclav Kotesovec, Aug 22 2017

Examples

			E.g.f.: A(x) = 1 + x + 7*x^2/2! + 73*x^3/3! + 1033*x^4/4! + 18541*x^5/5! +...
such that log(A(x)) = x*C(x)^3,
log(A(x)) = x + 3*x^2 + 9*x^3 + 28*x^4 + 90*x^5 + 297*x^6 + 1001*x^7 +...
where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
		

Crossrefs

Programs

  • PARI
    {a(n)=my(C=1); for(i=1, n, C=1+x*C^2 +x*O(x^n));
    n!*polcoef(exp(x*C^3), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0, 1, sum(k=0, n, n!/k! * binomial(2*n+k-1, n-k) * 3*k/(n+2*k) ))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(serreverse(x*(1-x))^3/x^2))) \\ Seiichi Manyama, Mar 15 2025

Formula

a(n) = Sum_{k=0..n} n!/k! * binomial(2*n+k-1, n-k) * 3*k/(n+2*k) for n>0 with a(0)=1.
a(n) ~ 3 * 2^(2*n+1/2) * n^(n-1) / exp(n-2). - Vaclav Kotesovec, Aug 22 2017
Conjecture D-finite with recurrence: +2*a(n) +(-11*n+20)*a(n-1) +(n^3+9*n^2-116*n+164)*a(n-2) +(-4*n^4+35*n^3+n^2-317*n+342)*a(n-3) -6*(n-3)*(6*n^3-50*n^2+147*n-176)*a(n-4) +12*(n-5)*(2*n-9)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jan 25 2020
E.g.f.: exp( (1/x)^2 * Series_Reversion( x*(1-x) )^3 ). - Seiichi Manyama, Mar 15 2025

A369722 Expansion of e.g.f. exp( (3/2) * (1-sqrt(1-4*x)) ).

Original entry on oeis.org

1, 3, 15, 117, 1305, 19323, 359559, 8084205, 213425361, 6475518675, 222088463199, 8497641269637, 358899729493545, 16585866328129803, 832523413971932055, 45105537151437499197, 2623613865509122341921, 163070009495928522691875
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(3/2*(1-sqrt(1-4*x)))))

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} 3^(n-k) * (n-1+k)! / (k! * (n-1-k)!).
a(n) = 2*(2*n-3)*a(n-1) + 9*a(n-2).
Previous Showing 11-20 of 28 results. Next