cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 135 results. Next

A100683 a(n) = a(n-1) + a(n-2) + a(n-3); a(0) = -1, a(1) = 2, a(2) = 2.

Original entry on oeis.org

-1, 2, 2, 3, 7, 12, 22, 41, 75, 138, 254, 467, 859, 1580, 2906, 5345, 9831, 18082, 33258, 61171, 112511, 206940, 380622, 700073, 1287635, 2368330, 4356038, 8012003, 14736371, 27104412, 49852786, 91693569, 168650767, 310197122
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2004

Keywords

Comments

A tribonacci sequence.
From Greg Dresden and Veda Garigipati, Jun 14 2022: (Start)
For n >= 2, a(n+2) is the number of ways to tile this figure of length n with squares, dominoes, and "trominoes" (of length 3):
_
|||___________
|||_|||_|||
As an example, here is one of the 254 possible tilings of this figure of length 8 with squares, dominoes, and trominoes:
_
||____|_|_|_|. (End)

Crossrefs

Programs

  • Maple
    a[0]:=-1:a[1]:=2:a[2]:=2:for n from 3 to 42 do a[n]:=a[n-1]+a[n-2]+a[n-3] od: seq(a[n],n=0..42);
  • Mathematica
    a[0] = -1; a[1] = a[2] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3]; Table[ a[n], {n, 0, 35}] (* Robert G. Wilson v, Dec 09 2004 *)
    LinearRecurrence[{1,1,1},{-1,2,2},34] (* Ray Chandler, Dec 08 2013 *)
  • PARI
    Vec(-(1-3*x-x^2)/(1-x-x^2-x^3) + O(x^70)) \\ Michel Marcus, Sep 25 2015

Formula

a(n+1) = 2*A001590(n+1) + A020992(n). - Creighton Dement, May 02 2005
O.g.f.: -(1-3x-x^2)/(1-x-x^2-x^3). - R. J. Mathar, Aug 22 2008
a(n) = T(n-2) + T(n) + T(n+1) where T(n) = A000073(n) the tribonacci sequence, for n >= 2. - Greg Dresden and Veda Garigipati, Jun 14 2022

Extensions

More terms from Emeric Deutsch, Farideh Firoozbakht and Robert G. Wilson v, Dec 08 2004

A020992 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 0, a(1) = 2, a(2) = 1.

Original entry on oeis.org

0, 2, 1, 3, 6, 10, 19, 35, 64, 118, 217, 399, 734, 1350, 2483, 4567, 8400, 15450, 28417, 52267, 96134, 176818, 325219, 598171, 1100208, 2023598, 3721977, 6845783, 12591358, 23159118, 42596259, 78346735, 144102112, 265045106, 487493953, 896641171, 1649180230
Offset: 0

Views

Author

Keywords

Comments

Tribonacci sequence beginning 0, 2, 1.
Pisano period lengths: 1, 4, 13, 8, 31, 52, 48, 16, 39, 124, 110, 104, 168, 48, 403, 32, 96, 156, 360, 248,.... - R. J. Mathar, Aug 10 2012
One bisection is 0, 1, 6, 19, 64, 217, 734, 2483, 8400,.. and the other 2, 3, 10, 35, 118, 399, 1350, 4567,... both with recurrence b(n)=3*b(n-1)+b(n-2)+b(n-3). - R. J. Mathar, Aug 10 2012
From Greg Dresden and Jiarui Zhou, Jun 30 2025: (Start)
For n >= 4, 2*a(n) is the number of ways to tile this shape of length n-2 with squares, dominos, and trominos (of length 3):
._
|||___________
|||_|||_|||
|_|.
As an example, here is one of the 2*a(10) = 434 ways to tile this shape of length 8:
._
| |_|_____|||
|_| (End)

Crossrefs

Programs

  • Magma
    I:=[0,2,1]; [n le 3 select I[n] else Self(n-1) + Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 09 2018
  • Mathematica
    LinearRecurrence[{1,1,1},{0,2,1},100] (* Vladimir Joseph Stephan Orlovsky, Jun 07 2011 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(2-x)/(1-x-x^2-x^3))) \\ G. C. Greubel, Feb 09 2018
    

Formula

G.f.: x*(2-x)/(1-x-x^2-x^3).
a(n) = 2*A000073(n+1)-A000073(n). - R. J. Mathar, Aug 22 2008
a(n) = 2*a(n-1) - a(n-4), n>3. - Vincenzo Librandi, Jun 08 2011

A235862 Indices of primes in A141523.

Original entry on oeis.org

0, 3, 4, 5, 8, 10, 14, 16, 24, 30, 40, 54, 63, 66, 67, 109, 188, 203, 421, 463, 704, 730, 798, 1155, 1259, 1376, 1789, 2095, 2650, 3833, 4538, 4794, 4840, 5386, 8348, 15176, 17282, 21250, 21386, 21825, 31242, 32843, 33706, 37026, 47546, 66848
Offset: 1

Views

Author

Robert Price, Jan 16 2014

Keywords

Comments

a(47) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={3,1,1}; Print[0]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[3]]=sum]

Extensions

Name clarified by Arthur O'Dwyer, Jul 25 2024

A027052 Triangular array T read by rows: T(n,0) = T(n,2n) = 1 for n >= 0, T(n,1)=0 for n >= 1, T(n,2)=1 for n >= 2 and for n >= 3, T(n,k) = T(n-1,k-3) + T(n-1, k-2) + T(n-1,k-1) for 3 <= k <= 2n-1. T(n,k)=0 for k < 0 or k > 2n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 3, 4, 1, 1, 0, 1, 2, 3, 6, 9, 8, 1, 1, 0, 1, 2, 3, 6, 11, 18, 23, 18, 1, 1, 0, 1, 2, 3, 6, 11, 20, 35, 52, 59, 42, 1, 1, 0, 1, 2, 3, 6, 11, 20, 37, 66, 107, 146, 153, 102, 1, 1, 0, 1, 2, 3, 6, 11, 20, 37, 68, 123, 210, 319, 406, 401, 256, 1
Offset: 0

Views

Author

Keywords

Comments

The following sequences all have the same parity: A004737, A006590, A027052, A071028, A071797, A078358, A078446. - Jeremy Gardiner, Mar 16 2003

Examples

			Triangle T(n,k) for 0 <= k <= 2n:
  1;
  1, 0, 1;
  1, 0, 1, 2, 1;
  1, 0, 1, 2, 3, 4, 1;
  1, 0, 1, 2, 3, 6, 9, 8, 1;
		

Crossrefs

Cf. A001590, a tribonacci sequence.
Cf. A160999 (row sums), A005408 (row lengths).
Diagonals T(n, n+c): A027053 (c=2), A027054 (c=3), A027055 (c=4).
Diagonals T(n, 2n-c): A027056 (c=1), A027058 (c=2), A027059 (c=3), A027060 (c=4), A027061(c=5), A027062 (c=6), A027063 (c=7), A027064 (c=8), A027065 (c=9), A027066 (c=10).
Other related sequences: A027057, A027071.
Other arrays of this type: A027023, A027082, A027113.

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=2 or k=2*n then return 1;
        elif k=1 then return 0;
        else return Sum([1..3], j-> T(n-1, k-j) );
        fi;
      end;
    Flat(List([0..10], n-> List([0..2*n], k-> T(n,k) ))); # G. C. Greubel, Nov 05 2019
  • Maple
    T:= proc(n, k) option remember;
          if k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq(seq(T(n, k), k=0..2*n), n=0..10); # G. C. Greubel, Nov 05 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]; Table[T[n, k], {n, 0, 12}, {k, 0, 2*n}]//Flatten (* G. C. Greubel, Nov 05 2019 *)
  • PARI
    {T(n, k) = if(k==0 || k==2 || k==2*n, 1, if(k==1, 0, sum(j=1,3, T(n-1, k-j)) ))};
    for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", "))) \\ G. C. Greubel, Nov 05 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [[T(n, k) for k in (0..2*n)] for n in (0..10)] # G. C. Greubel, Nov 05 2019
    

Formula

A001590(k+1) = T(n,k) if 0 <= k <= n. - Michael Somos, Jun 01 2014

Extensions

Offset and keyword:tabl corrected by R. J. Mathar, Jun 01 2009

A081172 Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = 1, a(2) = 0.

Original entry on oeis.org

1, 1, 0, 2, 3, 5, 10, 18, 33, 61, 112, 206, 379, 697, 1282, 2358, 4337, 7977, 14672, 26986, 49635, 91293, 167914, 308842, 568049, 1044805, 1921696, 3534550, 6501051, 11957297, 21992898, 40451246, 74401441, 136845585, 251698272, 462945298, 851489155
Offset: 0

Views

Author

Harry J. Smith, Apr 19 2003

Keywords

Comments

The name "tribonacci number" is less well-defined than "Fibonacci number". The sequence A000073 (which begins 0, 0, 1) is probably the most important version, but the name has also been applied to A000213, A001590, and A081172. - N. J. A. Sloane, Jul 25 2024
Completes the set of tribonacci numbers starting with 0's and 1's in the first three terms:
0,0,0 A000004;
0,0,1 A000073;
0,1,0 A001590;
0,1,1 A000073 starting at a(1);
1,0,0 A000073 starting at a(-1);
1,0,1 A001590;
1,1,0 this sequence;
1,1,1 A000213.

Crossrefs

Programs

  • GAP
    a:=[1,1,0];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-2*x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 23 2019
    
  • Maple
    A081172 := proc(n)
        option remember;
        if n <= 2 then
            op(n+1,[1,1,0]) ;
        else
            add(procname(n-i),i=1..3) ;
        end if;
    end proc: # R. J. Mathar, Aug 09 2012
  • Mathematica
    LinearRecurrence[{1,1,1}, {1,1,0}, 40] (* Vladimir Joseph Stephan Orlovsky, Jun 07 2011 *)
  • PARI
    { a1=1; a2=1; a3=0; write("b081172.txt",0," ",a1); write("b081172.txt",1," ",a2); write("b081172.txt",2," ",a3); for(n=3,500, a=a1+a2+a3; a1=a2; a2=a3; a3=a; write("b081172.txt",n," ",a) ) } \\ Harry J. Smith, Mar 20 2009
    
  • PARI
    my(x='x+O('x^40)); Vec((1-2*x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
    
  • Sage
    ((1-2*x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
    

Formula

From R. J. Mathar, Mar 27 2009: (Start)
G.f.: (1-2*x^2)/(1 - x - x^2 - x^3).
a(n) = A000073(n+2) - 2*A000073(n). (End)

A232542 Primes in A100683.

Original entry on oeis.org

2, 2, 3, 7, 41, 467, 859, 8012003, 168650767, 17843905055671832482869722050793, 2337143892123435886770270228393473, 563028582965218666043722998152482699
Offset: 1

Views

Author

Robert Price, Nov 25 2013

Keywords

Crossrefs

Programs

  • Mathematica
    a={-1,2,2}; Print[2]; Print[2]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]

Extensions

Name clarified by Arthur O'Dwyer, Jul 25 2024

A078042 Expansion of (1-x)/(1+x-x^2+x^3).

Original entry on oeis.org

1, -2, 3, -6, 11, -20, 37, -68, 125, -230, 423, -778, 1431, -2632, 4841, -8904, 16377, -30122, 55403, -101902, 187427, -344732, 634061, -1166220, 2145013, -3945294, 7256527, -13346834, 24548655, -45152016, 83047505, -152748176, 280947697, -516743378, 950439251, -1748130326, 3215312955
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Absolute values give coordination sequence for (3,infinity,infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
a(n) is the upper left entry of the n-th power of the 3 X 3 matrix M = [-2, -2, 1; 1, 1, 0; 1, 0, 0]; a(n) = M^n [1, 1]. - Philippe Deléham, Apr 19 2023

Crossrefs

Programs

  • Magma
    [n le 3 select -n*(-1)^n else -Self(n-1)+Self(n-2)-Self(n-3): n in [1..50]]; // Vincenzo Librandi, Dec 30 2015
  • Mathematica
    CoefficientList[Series[(1-x)/(1+x-x^2+x^3),{x,0,40}],x] (* or *) LinearRecurrence[{-1,1,-1},{1,-2,3},40] (* Harvey P. Dale, Jun 01 2012 *)
  • PARI
    Vec((1-x)/(1+x-x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    

Formula

a(n) = -a(n-1) + a(n-2) - a(n-3) for n > 2; a(0)=1, a(1)=-2, a(2)=3. - Harvey P. Dale, Jun 01 2012
a(n) = (-1)^n * A001590(n+2).
a(n) = Sum_{k=0..n} A188316(n,k)*(-2)^k. - Philippe Deléham, Apr 19 2023

A230607 Primes in the tribonacci-like sequence A214899.

Original entry on oeis.org

2, 2, 5, 173, 1979, 10035601, 1314434453, 15043078019, 75946890143515970461691, 9947307490759622919990767, 33651500197152003774080593, 113842209720657202395344053, 577291982170349695261586984393, 33503139717732963900675717496847941
Offset: 1

Views

Author

Robert Price, Dec 05 2013

Keywords

Crossrefs

Programs

  • Mathematica
    a={2,1,2}; Print[2]; Print[2]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]
    Select[LinearRecurrence[{1,1,1},{2,1,2},300],PrimeQ] (* Harvey P. Dale, Jul 30 2015 *)

Extensions

More terms from Harvey P. Dale, Jul 30 2015

A232498 Primes in the tribonacci-like sequence, A020992.

Original entry on oeis.org

2, 3, 19, 4567, 52267, 325219, 2967036956187340614662532876709507060271690954641131383
Offset: 1

Views

Author

Robert Price, Dec 12 2013

Keywords

Crossrefs

Programs

  • Mathematica
    a={0,2,1}; Print[2] For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]

A035607 Table a(d,m) of number of points of L1 norm m in cubic lattice Z^d, read by antidiagonals (d >= 1, m >= 0).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 6, 8, 2, 1, 8, 18, 12, 2, 1, 10, 32, 38, 16, 2, 1, 12, 50, 88, 66, 20, 2, 1, 14, 72, 170, 192, 102, 24, 2, 1, 16, 98, 292, 450, 360, 146, 28, 2, 1, 18, 128, 462, 912, 1002, 608, 198, 32, 2, 1, 20, 162, 688, 1666, 2364, 1970, 952, 258, 36, 2, 1, 22, 200, 978, 2816
Offset: 0

Views

Author

Keywords

Comments

Table also gives coordination sequences of same lattices.
Rows sums are given by A001333. Rising and falling diagonals are the tribonacci numbers A000213, A001590. - Paul Barry, Feb 13 2003
a(d,m) also gives the number of ways to choose m squares from a 2 X (d-1) grid so that no two squares in the selection are (horizontally or vertically) adjacent. - Jacob A. Siehler, May 13 2006
Mirror image of triangle A113413. - Philippe Deléham, Oct 15 2006
The Ca1 sums lead to A126116 and the Ca2 sums lead to A070550, see A180662 for the definitions of these triangle sums. - Johannes W. Meijer, Aug 05 2011
A035607 is jointly generated with the Delannoy triangle A008288 as an array of coefficients of polynomials v(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = x*u(n-1,x) + v(n-1) and v(n,x) = 2*x*u(n-1,x) + v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 05 2012
Also, the polynomial v(n,x) above is x + (x + 1)*f(n-1,x), where f(0,x) = 1. - Clark Kimberling, Oct 24 2014
Rows also give the coefficients of the independence polynomial of the n-ladder graph. - Eric W. Weisstein, Dec 29 2017
Considering both sequences as square arrays (offset by one row), the rows of A035607 are the first differences of the rows of A008288, and the rows of A008288 are the partial sums of the rows of A035607. - Shel Kaphan, Feb 23 2023
Considering only points with nonnegative coordinates, the number of points at L1 distance = m in d dimensions is the same as the number of ways of putting m indistinguishable balls into d distinguishable urns, binomial(m+d-1, d-1). This is one facet of the cross-polytope. Allowing for + and - coordinates, there are binomial(d,i)*2^i facets containing points with up to i nonzero coordinates. Eliminating double counting of points with any coordinates = 0, there are Sum_{i=1..d} (-1)^(d-i)*binomial(m+i-1,i-1)*binomial(d,i)*2^i points at distance m in d dimensions. One may avoid the alternating sum by using binomial(m-1,i-1) to count only the points per facet with exactly i nonzero coordinates, avoiding any double counting, but the result is the same. - Shel Kaphan, Mar 04 2023

Examples

			From _Clark Kimberling_, Oct 24 2014: (Start)
As a triangle of coefficients in polynomials v(n,x) in Comments, the first 6 rows are
  1
  1   2
  1   4   2
  1   6   8   2
  1   8  18  12   2
  1  10  32  38  16   2
  ... (End)
From _Shel Kaphan_, Mar 04 2023: (Start)
For d=3, m=4:
There are binomial(3,1)*2^1 = 6 facets (vertices) of binomial(4+1-1,1-1) = 1 point with <= one nonzero coordinate.
There are binomial(3,2)*2^2 = 12 facets (edges) of binomial(4+2-1,2-1) = 5 points with <= two nonzero coordinates.
There are binomial(3,3)*2^3 = 8 facets (faces) of binomial(4+3-1,3-1) = 15 points with <= three nonzero coordinates.
a(3,4) = 8*15 - 12*5 + 6*1 = 120 - 60 + 6 = 66. (End)
		

Crossrefs

Other versions: A113413, A119800, A122542, A266213.
Cf. A008288, which has g.f. 1/(1-x-x*y-x^2*y).
Cf. A078057 (row sums), A050146 (central terms).
Cf. A050146.

Programs

  • Haskell
    a035607 n k = a035607_tabl !! n !! k
    a035607_row n = a035607_tabl !! n
    a035607_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 2])
    -- Reinhard Zumkeller, Jul 20 2013
    
  • Maple
    A035607 := proc(d,m) local j: add(binomial(floor((d-1+j)/2),d-m-1)*binomial(d-m-1, floor((d-1-j)/2)),j=0..d-1) end: seq(seq(A035607(d,m),m=0..d-1),d=1..11); # d=dimension, m=norm # Johannes W. Meijer, Aug 05 2011
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A008288 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A035607 *)
    (* Clark Kimberling, Mar 09 2012 *)
    Reverse /@ CoefficientList[CoefficientList[Series[(1 + x)/(1 - x - x y - x^2 y), {x, 0, 10}], x], y] // Flatten (* Eric W. Weisstein, Dec 29 2017 *)
  • PARI
    T(n, k) = if (k==0, 1, sum(i=0, k-1, binomial(n-k,i+1)*binomial(k-1,i)*2^(i+1)));
    tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(T(n, k), ", ")); print); \\ as a triangle; Michel Marcus, Feb 27 2018
  • Sage
    def A035607_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+2*sum(prec(n-i,k-1) for i in (2..n-k+1))
        return [prec(n, n-k) for k in (0..n-1)]
    for n in (1..10): print(A035607_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

From Johannes W. Meijer, Aug 05 2011: (Start)
f(d,m) = Sum_{j=0..d-1} binomial(floor((d-1+j)/2), d-m-1)*binomial(d-m-1, floor((d-1-j)/2)), d >= 1 and 0 <= m <= d-1.
f(d,m) = f(d-1,m-1) + f(d-1,m) + f(d-2,m-1) (d >= 3 and 1 <= m <= d-1) with f(d,0) = 1 (d >= 1) and f(d,d-1) = 2 (d>=2). (End)
From Roger Cuculière, Apr 10 2006: (Start)
The generating function G(x,y) of this double sequence is the sum of a(n,p)*x^n*y^p, n=1..oo, p=0..oo, which is G(x,y) = x*(1+y)/(1-x-y-x*y).
The horizontal generating function H_n(y), which generates the rows of the table: (1, 2, 2, 2, 2, ...), (1, 4, 8, 12, 16, ...), (1, 6, 18, 38, 66, ...), is the sum of a(n,p)*y^p, p=0..oo, for each fixed n. This is H_n(y) = ((1+y)^n)/((1-y)^n).
The vertical generating function V_p(x), which generates the columns of the table: (1, 1, 1, 1, 1, ...), (2, 4, 6, 8, 10, ...), (2, 8, 18, 32, 50, ...), is the sum of a(n,p)*x^n, n=1..oo, for each fixed p. This is V_p(x) = 2*((1+x)^(p-1))/((1-x)^(p+1)) for p >= 1 and V_0(x) = x/(1-x). (End)
G.f.: (1+x)/(1-x-x*y-x^2*y). - Vladeta Jovovic, Apr 02 2002 (But see previous lines!)
T(2*n,n) = A050146(n+1). - Reinhard Zumkeller, Jul 20 2013
Seen as a triangle read by rows: T(n,0) = 1, for n > 1: T(n,n-1) = 2, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-1), 0 < k < n. - Reinhard Zumkeller, Jul 20 2013
Seen as a triangle T(n,k) with 0 <= k < n read by rows: T(n,0)=1 for n > 0 and T(n,k) = Sum_{i=0..k-1} binomial(n-k,i+1)*binomial(k-1,i)*2^(i+1) for k > 0. - Werner Schulte, Feb 22 2018
With p >= 1 and q >= 0, as a square array a(p,q) = T(p+q-1,q) = 2*p*Hypergeometric2F1[1-p, 1-q, 2, 2] for q >= 1. Consequently, a(p,q) = a(q,p)*p/q. - Shel Kaphan, Feb 14 2023
For n >= 1, T(2*n,n) = A002003(n), T(3*n,2*n) = A103885(n) and T(4*n,3*n) = A333715(n). - Peter Bala, Jun 15 2023

Extensions

More terms from David W. Wilson
Maple program corrected and information added by Johannes W. Meijer, Aug 05 2011
Previous Showing 11-20 of 135 results. Next