A051564 Second unsigned column of triangle A051523.
0, 1, 21, 362, 6026, 101524, 1763100, 31813200, 598482000, 11752855200, 240947474400, 5154170774400, 114942011990400, 2669517204076800, 64496340380102400, 1619153396908185600, 42188624389562112000
Offset: 0
References
- Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051523.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..440
Crossrefs
Programs
-
Mathematica
f[n_] := n!*Sum[(-1)^k*Binomial[-10, k]/(n - k), {k, 0, n - 1}]; Array[f, 17, 0] Range[0, 16]! CoefficientList[ Series[-Log[(1 - x)]/(1 - x)^10, {x, 0, 16}], x] (* Or, using elementary symmetric functions: *) f[k_] := k + 9; t[n_] := Table[f[k], {k, 1, n}] a[n_] := SymmetricPolynomial[n - 1, t[n]] Table[a[n], {n, 1, 16}] (* Clark Kimberling, Dec 29 2011 *)
Formula
a(n) = A051523(n, 2)*(-1)^(n-1).
E.g.f.: -log(1-x)/(1-x)^10.
a(n) = n!*Sum_{k=0..n-1}((-1)^k*binomial(-10,k)/(n-k)), for n>=1. - Milan Janjic, Dec 14 2008
a(n) = n!*[9]h(n), where [k]h(n) denotes the k-th successive summation of the harmonic numbers from 0 to n. - Gary Detlefs, Jan 04 2011
Comments