cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 109 results. Next

A090802 Triangle read by rows: a(n,k) = number of k-length walks in the Hasse diagram of a Boolean algebra of order n.

Original entry on oeis.org

1, 2, 1, 4, 4, 2, 8, 12, 12, 6, 16, 32, 48, 48, 24, 32, 80, 160, 240, 240, 120, 64, 192, 480, 960, 1440, 1440, 720, 128, 448, 1344, 3360, 6720, 10080, 10080, 5040, 256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320
Offset: 0

Views

Author

Ross La Haye, Feb 10 2004

Keywords

Comments

Row sums = A010842(n); Row sums from column 1 on = A066534(n) = n*A010842(n-1) = A010842(n) - 2^n.
a(n,k) = n! = k! = A000142(n) for n = k; a(n,n-1) = 2*n! = A052849(n) for n > 1; a(n,n-2) = 2*n! = A052849(n) for n > 2; a(n,n-3) = (4/3)*n! = A082569(n) for n > 3; a(n,n-1)/a(2,1) = n!/2! = A001710(n) for n > 1; a(n,n-2)/ a(3,1) = n!/3! = A001715(n) for n > 2; a(n,n-3)/a(4,1) = n!/4! = A001720(n) for n > 3.
a(2k, k) = A052714(k+1). a(2k-1, k) = A034910(k).
a(n,0) = A000079(n); a(n,1) = A001787(n) = row sums of A003506; a(n,2) = A001815(n) = 2!*A001788(n-1); a(n,3) = A052771(n) = 3!*A001789(n); a(n,4) = A052796(n) = 4!*A003472(n); ceiling[a(n,1) / 2] = A057711(n); a(n,5) = 5!*A054849(n).
In a class of n students, the number of committees (of any size) that contain an ordered k-sized subcommittee is a(n,k). - Ross La Haye, Apr 17 2006
Antidiagonal sums [1,2,5,12,30,76,198,528,1448,4080,...] appear to be binomial transform of A000522 interleaved with itself, i.e., 1,1,2,2,5,5,16,16,65,65,... - Ross La Haye, Sep 09 2006
Let P(A) be the power set of an n-element set A. Then a(n,k) = the number of ways to add k elements of A to each element x of P(A) where the k elements are not elements of x and order of addition is important. - Ross La Haye, Nov 19 2007
The derivatives of x^n evaluated at x=2. - T. D. Noe, Apr 21 2011

Examples

			{1};
{2, 1};
{4, 4, 2};
{8, 12, 12, 6};
{16, 32, 48, 48, 24};
{32, 80, 160, 240, 240, 120};
{64, 192, 480, 960, 1440, 1440, 720};
{128, 448, 1344, 3360, 6720, 10080, 10080, 5040};
{256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320}
a(5,3) = 240 because P(5,3) = 60, 2^(5-3) = 4 and 60 * 4 = 240.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[n!/(n-k)! * 2^(n-k), {n, 0, 8}, {k, 0, n}]] (* Ross La Haye, Feb 10 2004 *)

Formula

a(n, k) = 0 for n < k. a(n, k) = k!*C(n, k)*2^(n-k) = P(n, k)*2^(n-k) = (2n)!!/((n-k)!*2^k) = k!*A038207(n, k) = A068424*2^(n-k) = Sum[C(n, m)*P(n-m, k), {m, 0, n-k}] = Sum[C(n, n-m)*P(n-m, k), {m, 0, n-k}] = n!*Sum[1/(m!*(n-m-k)!), {m, 0, n-k}] = k!*Sum[C(n, m)*C(n-m, k), {m, 0, n-k}] = k!*Sum[C(n, n-m)*C(n-m, k), {m, 0, n-k}] = k!*C(n, k)*Sum[C(n-k, n-m-k), {m, 0, n-k}] = k!*C(n, k)*Sum[C(n-k, m), {m, 0, n-k}] for n >= k.
a(n, k) = 0 for n < k. a(n, k) = n*a(n-1, k-1) for n >= k >= 1.
E.g.f. (by columns): exp(2x)*x^k.

Extensions

More terms from Ray Chandler, Feb 26 2004
Entry revised by Ross La Haye, Aug 18 2006

A124757 Zero-based weighted sum of compositions in standard order.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 3, 4, 5, 6, 0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14, 15, 0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
Sum of all positions of 1's except the last in the reversed binary expansion of n. For example, the reversed binary expansion of 14 is (0,1,1,1), so a(14) = 2 + 3 = 5. Keeping the last position gives A029931. - Gus Wiseman, Jan 17 2023

Examples

			Composition number 11 is 2,1,1; 0*2+1*1+2*1 = 3, so a(11) = 3.
The table starts:
  0
  0
  0 1
  0 1 2 3
		

Crossrefs

Cf. A066099, A070939, A029931, A011782 (row lengths), A001788 (row sums).
Row sums of A048793 if we delete the last part of every row.
For prime indices instead of standard comps we have A359674, rev A359677.
Positions of first appearances are A359756.
A003714 lists numbers with no successive binary indices.
A030190 gives binary expansion, reverse A030308.
A230877 adds up positions of 1's in binary expansion, length A000120.
A359359 adds up positions of 0's in binary expansion, length A023416.

Programs

  • Mathematica
    Table[Total[Most[Join@@Position[Reverse[IntegerDigits[n,2]],1]]],{n,30}]

Formula

For a composition b(1),...,b(k), a(n) = Sum_{i=1..k} (i-1)*b(i).
For n>0, a(n) = A029931(n) - A070939(n).

A133156 Irregular triangle read by rows: coefficients of U(n,x), Chebyshev polynomials of the second kind with exponents in decreasing order.

Original entry on oeis.org

1, 2, 4, -1, 8, -4, 16, -12, 1, 32, -32, 6, 64, -80, 24, -1, 128, -192, 80, -8, 256, -448, 240, -40, 1, 512, -1024, 672, -160, 10, 1024, -2304, 1792, -560, 60, -1, 2048, -5120, 4608, -1792, 280, -12, 4096, -11264, 11520, -5376, 1120, -84, 1
Offset: 0

Views

Author

Gary W. Adamson, Dec 16 2007

Keywords

Comments

The Chebyshev polynomials of the second kind are defined by the recurrence relation: U(0,x) = 1; U(1,x) = 2x; U(n+1,x) = 2x*U(n,x) - U(n-1,x).
From Gary W. Adamson, Nov 28 2008: (Start)
Triangle read by rows, unsigned = A000012 * A028297.
Row sums of absolute values give the Pell series, A000129.
(End)
The row sums are {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...}.
Triangle, with zeros omitted, given by (2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 27 2011
Coefficients in the expansion of sin((n+1)*x)/sin(x) in descending powers of cos(x). The length of the n-th row is A008619(n). - Jianing Song, Nov 02 2018

Examples

			The first few Chebyshev polynomials of the second kind are
    1;
    2x;
    4x^2 -    1;
    8x^3 -    4x;
   16x^4 -   12x^2 +   1;
   32x^5 -   32x^3 +   6x;
   64x^6 -   80x^4 +  24x^2 -   1;
  128x^7 -  192x^5 +  80x^3 -   8x;
  256x^8 -  448x^6 + 240x^4 -  40x^2 +  1;
  512x^9 - 1024x^7 + 672x^5 - 160x^3 + 10x;
  ...
From _Roger L. Bagula_ and _Gary W. Adamson_: (Start)
     1;
     2;
     4,    -1;
     8,    -4;
    16,   -12,    1;
    32,   -32,    6;
    64,   -80,   24,   -1;
   128,  -192,   80,   -8;
   256,  -448,  240,  -40,  1;
   512, -1024,  672, -160, 10;
  1024, -2304, 1792, -560, 60, -1; (End)
From  _Philippe Deléham_, Dec 27 2011: (Start)
Triangle (2, 0, 0, 0, 0, ...) DELTA (0, -1/2, 1/2, 0, 0, 0, 0, 0, ...) begins:
   1;
   2,   0;
   4,  -1,  0;
   8,  -4,  0,  0;
  16, -12,  1,  0,  0;
  32, -32,  6,  0,  0,  0;
  64, -80, 24, -1,  0,  0,  0; (End)
		

Crossrefs

Programs

  • Mathematica
    t[n_, m_] = (-1)^m*Binomial[n - m, m]*2^(n - 2*m);
    Table[Table[t[n, m], {m, 0, Floor[n/2]}], {n, 0, 10}];
    Flatten[%] (* Roger L. Bagula, Dec 19 2008 *)

Formula

A generating function for U(n) is 1/(1 - 2tx + t^2). Given A038207, shift down columns to allow for (1, 1, 2, 2, 3, 3, ...) terms in each row, then insert alternate signs.
T(n,m) = (-1)^m*binomial(n - m, m)*2^(n - 2*m). - Roger L. Bagula and Gary W. Adamson, Dec 19 2008
From Tom Copeland, Feb 11 2016: (Start)
Shifted o.g.f.: G(x,t) = x/(1 - 2x + tx^2).
A053117 is a reflected, aerated version of this entry; A207538, an unsigned version; and A099089, a reflected, shifted version.
The compositional inverse of G(x,t) is Ginv(x,t) = ((1 + 2x) - sqrt((1 + 2x)^2 - 4tx^2))/(2tx) = x - 2x^2 + (4 + t)x^3 - (8 + 6t)x^4 + ..., a shifted o.g.f. for A091894 (mod signs with A091894(0,0) = 0.). Cf. A097610 with h_1 = -2 and h_2 = t. (End)

Extensions

More terms from Philippe Deléham, Sep 12 2009

A054851 a(n) = 2^(n-7)*binomial(n,7). Number of 7D hypercubes in an n-dimensional hypercube.

Original entry on oeis.org

1, 16, 144, 960, 5280, 25344, 109824, 439296, 1647360, 5857280, 19914752, 65175552, 206389248, 635043840, 1905131520, 5588385792, 16066609152, 45364543488, 126012620800, 344876646400, 931166945280, 2483111854080
Offset: 7

Views

Author

Henry Bottomley, Apr 14 2000

Keywords

Comments

If X_1,X_2,...,X_n is a partition of a 2n-set X into 2-blocks then, for n>6, a(n) is equal to the number of (n+7)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007

Crossrefs

Programs

  • GAP
    List([7..30], n-> 2^(n-7)*Binomial(n,7)); # G. C. Greubel, Aug 27 2019
  • Magma
    [2^(n-7)*Binomial(n,7): n in [7..30]]; // G. C. Greubel, Aug 27 2019
    
  • Maple
    seq(binomial(n+7,7)*2^n,n=0..21); # Zerinvary Lajos, Jun 23 2008
  • Mathematica
    Table[2^(n-7)*Binomial[n,7], {n,7,30}] (* G. C. Greubel, Aug 27 2019 *)
  • PARI
    vector(23, n, 2^(n-1)*binomial(n+6, 7)) \\ G. C. Greubel, Aug 27 2019
    

Formula

a(n) = 2*a(n-1) + A002409(n-1).
a(n+8) = A082141(n+1)/2.
G.f.: x^7/(1-2*x)^8. - Colin Barker, Sep 04 2012
a(n) = Sum_{i=7..n} binomial(i,7)*binomial(n,i). Example: for n=11, a(11) = 1*330 + 8*165 + 36*55 + 120*11 + 330*1 = 5280. - Bruno Berselli, Mar 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=7} 1/a(n) = 14*log(2) - 259/30.
Sum_{n>=7} (-1)^(n+1)/a(n) = 10206*log(3/2) - 124117/30. (End)

Extensions

More terms from James Sellers, Apr 15 2000

A055580 Björner-Welker sequence: 2^n*(n^2 + n + 2) - 1.

Original entry on oeis.org

1, 7, 31, 111, 351, 1023, 2815, 7423, 18943, 47103, 114687, 274431, 647167, 1507327, 3473407, 7929855, 17956863, 40370175, 90177535, 200278015, 442499071, 973078527, 2130706431, 4647288831, 10099884031, 21877489663
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000; revised Feb 12 2001

Keywords

Comments

a(n) is the d=1 Betti number of the complement of '3-equal' arrangements in n-dimensional real space, see Björner-Welker reference, Table I, pp. 308-309, column '1' with k=3 and Th. 5.2, pp. 297-298.
Binomial transform of [1/2, 2/3, 3/4, 4/5, ...] = 1/2, 7/6, 31/12, 111/20, 351/30, 1023/42, ..., where 2, 6, 12, 20, ... = A002378 (deleting the zero). - Gary W. Adamson, Apr 28 2005
Number of three-dimensional block structures associated with n joint systems in the construction of stable underground structures. - Richard M. Green, Jul 26 2011
Number of monotone mappings from the chain with three points to the complete binary tree of height n (n+1 levels). For example, the seven monotone mappings from the chain with three points (denoted 1,2,3, in order) to the complete binary tree with two levels (with a the root of the tree, and b, c the atoms) are: f(1)=f(2)=f(3)=a; f(1)=f(2)=a, f(3)=b; f(1)=f(2)=a, f(3)=c; f(1)=a, f(2)=f(3)=b; f(1)=a, f(2)=f(3)=c; f(1)=f(2)=f(3)=b; f(1)=f(2)=f(3)=c. - Pietro Codara, Mar 26 2015

References

  • H. Barcelo and S. Smith, The discrete fundamental group of the order complex of B_n, Abstract 1020-05-141, 1020th Meeting Amer. Math. Soc., Cincinatti, Ohio, Oct 21-22, 2006.

Crossrefs

Fourth column of triangle A055252.

Programs

  • Magma
    [2^n*(n^2+n+2)-1: n in [0..35]]; // Vincenzo Librandi, Jul 28 2011
    
  • Mathematica
    Table[ n*(n+1)*2^(n-2), {n, 0, 26}] // Accumulate // Rest (* Jean-François Alcover, Jul 09 2013, after Paul Barry *)
    LinearRecurrence[{7,-18,20,-8},{1,7,31,111},30] (* Harvey P. Dale, Nov 27 2014 *)
  • PARI
    a(n)=(n^2+n+2)<Charles R Greathouse IV, Jul 28 2011

Formula

a(n) = A055252(n+3, 3).
a(n) = Sum_{j=0..n-1} a(j) + A045618(n), n >= 1.
G.f.: 1/((1-2*x)^3*(1-x)).
Partial sums of A001788 (without leading zero). - Paul Barry, Jun 26 2003
a(n) = A001788(n) - A000337(n). - Jon Perry, Dec 12 2003
a(n) = A119258(n+4,n). - Reinhard Zumkeller, May 11 2006
E.g.f.: 2*(1 + 2*x + 2*x^2)*exp(2*x) - exp(x). - G. C. Greubel, Oct 28 2016
a(n) = Sum_{k=0..n+1} Sum_{i=0..n+1} i^2 * C(k,i). - Wesley Ivan Hurt, Sep 21 2017

Extensions

Edited (for consistency with change of offset) by M. F. Hasler, Nov 03 2012

A089658 a(n) = S1(n,1), where S1(n, t) = Sum_{k=0..n} (k^t * Sum_{j=0..k} binomial(n,j)).

Original entry on oeis.org

0, 2, 11, 42, 136, 400, 1104, 2912, 7424, 18432, 44800, 107008, 251904, 585728, 1347584, 3072000, 6946816, 15597568, 34799616, 77201408, 170393600, 374341632, 818937856, 1784676352, 3875536896, 8388608000, 18102616064, 38956695552, 83617644544, 179046449152
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2004

Keywords

Crossrefs

Sequences of S1(n, t): A001792 (t=0), this sequence (t=1), A089659 (t=2), A089660 (t=3), A089661 (t=4), A089662 (t=5), A089663 (t=6).

Programs

  • Magma
    I:=[0,2,11]; [n le 3 select I[n] else 6*Self(n-1)-12*Self(n-2)+8*Self(n-3): n in [1..41]]; // Vincenzo Librandi, Jun 22 2016
    
  • Mathematica
    LinearRecurrence[{6,-12,8}, {0,2,11}, 40] (* Vincenzo Librandi, Jun 22 2016 *)
  • SageMath
    [n*(5+3*n)*2^(n-3) for n in (0..40)] # G. C. Greubel, May 24 2022

Formula

a(n) = n*(5 + 3*n) * 2^(n-3). (See Wang and Zhang p. 333.)
From Chai Wah Wu, Jun 21 2016: (Start)
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) for n > 2.
G.f.: x*(2 - x)/(1 - 2*x)^3. (End)
E.g.f.: x*(4 + 3*x)*exp(2*x)/2. - Ilya Gutkovskiy, Jun 21 2016
a(n) = 2*A001788(n) - A001788(n-1). - R. J. Mathar, Jul 22 2021

A081140 10th binomial transform of (0,0,1,0,0,0,...).

Original entry on oeis.org

0, 0, 1, 30, 600, 10000, 150000, 2100000, 28000000, 360000000, 4500000000, 55000000000, 660000000000, 7800000000000, 91000000000000, 1050000000000000, 12000000000000000, 136000000000000000, 1530000000000000000
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, the three-fold convolution of A011557 (powers of 10).

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), this sequence (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).

Programs

  • Magma
    [10^n* Binomial(n+2, 2): n in [-2..20]]; // Vincenzo Librandi, Oct 16 2011
  • Mathematica
    Table[10^(n-2)*Binomial[n, 2], {n, 0, 30}] (* G. C. Greubel, May 13 2021 *)

Formula

a(n) = 30*a(n-1) - 300*a(n-2) + 1000*a(n-3), a(0)=a(1)=0, a(2)=1.
a(n) = 10^(n-2)*binomial(n, 2).
G.f.: x^2/(1-10*x)^3.
E.g.f.: (x^2/2)*exp(10*x). - G. C. Greubel, May 13 2021
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 20 - 180*log(10/9).
Sum_{n>=2} (-1)^n/a(n) = 220*log(11/10) - 20. (End)

A081141 11th binomial transform of (0,0,1,0,0,0,...).

Original entry on oeis.org

0, 0, 1, 33, 726, 13310, 219615, 3382071, 49603708, 701538156, 9646149645, 129687123005, 1711870023666, 22254310307658, 285596982281611, 3624884775112755, 45569980029988920, 568105751040528536
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, the three-fold convolution of A001020 (powers of 11).

Crossrefs

Cf. A001020.
Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), this sequence (q=11), A081142 (q=12), A027476 (q=15).

Programs

  • Magma
    [11^(n-2)*Binomial(n, 2): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
    
  • Maple
    seq((11)^(n-2)*binomial(n,2), n=0..30); # G. C. Greubel, May 13 2021
  • Mathematica
    LinearRecurrence[{33,-363,1331},{0,0,1},30] (* Harvey P. Dale, Dec 15 2014 *)
  • PARI
    vector(20, n, n--; 11^(n-2)*binomial(n, 2)) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    [11^(n-2)*binomial(n, 2) for n in range(20)] # G. C. Greubel, Nov 23 2018

Formula

a(n) = 33*a(n-1) - 363*a(n-2) + 1331*a(n-3), a(0) = a(1) = 0, a(2) = 1.
a(n) = 11^(n-2)*binomial(n, 2).
G.f.: x^2/(1 - 11*x)^3.
E.g.f.: (1/2)*exp(11*x)*x^2. - Franck Maminirina Ramaharo, Nov 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 22 - 220*log(11/10).
Sum_{n>=2} (-1)^n/a(n) = 264*log(12/11) - 22. (End)

A027476 Third column of A027467.

Original entry on oeis.org

1, 45, 1350, 33750, 759375, 15946875, 318937500, 6150937500, 115330078125, 2114384765625, 38058925781250, 674680957031250, 11806916748046875, 204350482177734375, 3503151123046875000, 59553569091796875000
Offset: 3

Views

Author

Keywords

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), this sequence (q=15).

Programs

  • Magma
    [(n-1)*(n-2)/2 * 15^(n-3): n in [3..20]]; // Vincenzo Librandi, Dec 29 2012
    
  • Maple
    seq((15)^(n-3)*binomial(n-1, 2), n=3..30) # G. C. Greubel, May 13 2021
  • Mathematica
    Table[(n-1)*(n-2)/2 * 15^(n-3), {n, 3, 30}] (* Vincenzo Librandi, Dec 29 2012 *)
  • Sage
    [(15)^(n-3)*binomial(n-1,2) for n in (3..30)] # G. C. Greubel, May 13 2021

Formula

Numerators of sequence a[3,n] in (a[i,j])^4 where a[i,j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
a(n) = 15^(n-3)*binomial(n-1, 2).
From G. C. Greubel, May 13 2021: (Start)
a(n) = 45*a(n-1) - 675*a(n-2) + 3375*a(n-3).
G.f.: x^3/(1 - 15*x)^3.
E.g.f.: (-2 + (2 - 30*x + 225*x^2)*exp(15*x))/6750. (End)
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=3} 1/a(n) = 30 - 420*log(15/14).
Sum_{n>=3} (-1)^(n+1)/a(n) = 480*log(16/15) - 30. (End)

A081142 12th binomial transform of (0,0,1,0,0,0,...).

Original entry on oeis.org

0, 0, 1, 36, 864, 17280, 311040, 5225472, 83607552, 1289945088, 19349176320, 283787919360, 4086546038784, 57954652913664, 811365140791296, 11234286564802560, 154070215745863680, 2095354934143746048
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, the three-fold convolution of A001021 (powers of 12).

Crossrefs

Cf. A001021.
Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), this sequence (q=12), A027476 (q=15).

Programs

  • GAP
    List([0..20],n->12^(n-2)*Binomial(n,2)); # Muniru A Asiru, Nov 24 2018
  • Magma
    [12^(n-2)* Binomial(n, 2): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
    
  • Maple
    seq(coeff(series(x^2/(1-12*x)^3,x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    LinearRecurrence[{36,-432,1728},{0,0,1},30] (* or *) Table[(n-1) (n-2) 3^(n-3) 2^(2n-7),{n,20}] (* Harvey P. Dale, Jul 25 2013 *)
  • PARI
    vector(20, n, n--; 2^(2*n-5)*3^(n-2)*n*(n-1)) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    [2^(2*n-5)*3^(n-2)*n*(n-1) for n in range(20)] # G. C. Greubel, Nov 23 2018
    

Formula

a(n) = 36*a(n-1) - 432*a(n-2) + 1728*a(n-3), a(0) = a(1) = 0, a(2) = 1.
a(n) = 12^(n-2)*binomial(n, 2).
G.f.: x^2/(1 - 12*x)^3.
a(n) = 2^(2*n-5)*3^(n-2)*n*(n-1). - Harvey P. Dale, Jul 25 2013
E.g.f.: (1/2)*exp(12*x)*x^2. - Franck Maminirina Ramaharo, Nov 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 24 - 264*log(12/11).
Sum_{n>=2} (-1)^n/a(n) = 312*log(13/12) - 24. (End)
Previous Showing 31-40 of 109 results. Next