cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 109 results. Next

A309280 T(n,k) is (1/k) times the sum of the elements of all subsets of [n] whose sum is divisible by k; triangle T(n,k), n >= 1, 1 <= k <= n*(n+1)/2, read by rows.

Original entry on oeis.org

1, 6, 1, 1, 24, 6, 4, 1, 1, 1, 80, 20, 9, 4, 4, 2, 2, 1, 1, 1, 240, 60, 30, 14, 12, 7, 5, 3, 3, 3, 2, 2, 1, 1, 1, 672, 168, 84, 42, 29, 20, 15, 10, 9, 7, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1, 1792, 448, 202, 112, 71, 49, 40, 27, 23, 17, 15, 12, 10, 10, 8, 8, 7, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1
Offset: 1

Views

Author

Alois P. Heinz, Jul 20 2019

Keywords

Comments

T(n,k) is defined for all n >= 0, k >= 1. The triangle contains only the positive terms. T(n,k) = 0 if k > n*(n+1)/2.
The sequence of column k satisfies a linear recurrence with constant coefficients of order 3*A000593(k).

Examples

			The subsets of [4] whose sum is divisible by 3 are: {}, {3}, {1,2}, {2,4}, {1,2,3}, {2,3,4}.  The sum of their elements is 0 + 3 + 3 + 6 + 6 + 9 = 27.  So T(4,3) = 27/3 = 9.
Triangle T(n,k) begins:
    1;
    6,  1,  1;
   24,  6,  4,  1,  1, 1;
   80, 20,  9,  4,  4, 2, 2, 1, 1, 1;
  240, 60, 30, 14, 12, 7, 5, 3, 3, 3, 2, 2, 1, 1, 1;
  ...
		

Crossrefs

Row sums give A309281.
Row lengths give A000217.
T(n,n) gives A309128.
Rows reversed converge to A000009.

Programs

  • Maple
    b:= proc(n, m, s) option remember; `if`(n=0, [`if`(s=0, 1, 0), 0],
          b(n-1, m, s) +(g-> g+[0, g[1]*n])(b(n-1, m, irem(s+n, m))))
        end:
    T:= (n, k)-> b(n, k, 0)[2]/k:
    seq(seq(T(n, k), k=1..n*(n+1)/2), n=1..10);
    # second Maple program:
    b:= proc(n, s) option remember; `if`(n=0, add(s/d *x^d,
          d=numtheory[divisors](s)), b(n-1, s)+b(n-1, s+n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, 0)):
    seq(T(n), n=1..10);
  • Mathematica
    b[n_, m_, s_] := b[n, m, s] = If[n == 0, {If[s == 0, 1, 0], 0}, b[n-1, m, s] + Function[g, g + {0, g[[1]] n}][b[n-1, m, Mod[s+n, m]]]];
    T[n_, k_] := b[n, k, 0][[2]]/k;
    Table[T[n, k], {n, 1, 10}, {k, 1, n(n+1)/2}] // Flatten (* Jean-François Alcover, Oct 04 2019, after Alois P. Heinz *)

Formula

T(n+1,n*(n+1)/2+1) = A000009(n) for n >= 0.

A050982 5-idempotent numbers.

Original entry on oeis.org

1, 30, 525, 7000, 78750, 787500, 7218750, 61875000, 502734375, 3910156250, 29326171875, 213281250000, 1510742187500, 10458984375000, 70971679687500, 473144531250000, 3105010986328125, 20091247558593750, 128360748291015625, 810699462890625000
Offset: 5

Views

Author

Keywords

Comments

Number of n-permutations of 6 objects: t,u,v,z,x, y with repetition allowed, containing exactly five u's. Example: a(6)=30 because we have uuuuut, uuuutu, uuutuu, uutuuu, utuuuu, tuuuuu, uuuuuv, uuuuvu, uuuvuu, uuvuuu, uvuuuu, vuuuuu, uuuuuz, uuuuzu, uuuzuu, uuzuuu, uzuuuu, zuuuuu, uuuuux, uuuuxu, uuuxuu, uuxuuu, uxuuuu, xuuuuu, uuuuuy, uuuuyu, uuuyuu, uuyuuu, uyuuuu, yuuuuu. - Zerinvary Lajos, Jun 16 2008

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43.

Crossrefs

Programs

Formula

a(n) = C(n, 5)*5^(n-5).
G.f.: x^5/(1-5*x)^6. - Zerinvary Lajos, Aug 06 2008
From Amiram Eldar, Apr 17 2022: (Start)
Sum_{n>=5} 1/a(n) = 6400*log(5/4) - 17125/12.
Sum_{n>=5} (-1)^(n+1)/a(n) = 32400*log(6/5) - 23625/4. (End)

A055252 Triangle of partial row sums (prs) of triangle A055249.

Original entry on oeis.org

1, 4, 1, 13, 5, 1, 38, 18, 6, 1, 104, 56, 24, 7, 1, 272, 160, 80, 31, 8, 1, 688, 432, 240, 111, 39, 9, 1, 1696, 1120, 672, 351, 150, 48, 10, 1, 4096, 2816, 1792, 1023, 501, 198, 58, 11, 1, 9728, 6912, 4608, 2815, 1524, 699, 256, 69, 12, 1, 22784, 16640, 11520
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is (((1-z)^2)/(1-2*z)^3)/(1-x*z/(1-z)).
This is the third member of the family of Riordan-type matrices obtained from A007318(n,m) (Pascal's triangle read as lower triangular matrix) by repeated application of the prs-procedure.
The column sequences appear as A049611(n+1), A001793, A001788, A055580, A055581, A055582, A055583 for m=0..6.

Examples

			[0] 1
[1] 4, 1
[2] 13, 5, 1
[3] 38, 18, 6, 1
[4] 104, 56, 24, 7, 1
[5] 272, 160, 80, 31, 8, 1
[6] 688, 432, 240, 111, 39, 9, 1
[7] 1696, 1120, 672, 351, 150, 48, 10, 1
Fourth row polynomial (n = 3): p(3, x) = 38 + 18*x + 6*x^2 + x^3.
		

Crossrefs

Cf. A007318, A055248, A055249. Row sums: A049612(n+1)= A055584(n, 0).

Programs

  • Maple
    T := (n, k) -> binomial(n, k)*hypergeom([3, k - n], [k + 1], -1):
    for n from 0 to 7 do seq(simplify(T(n, k)), k = 0..n) od; # Peter Luschny, Sep 23 2024

Formula

a(n, m)=sum(A055249(n, k), k=m..n), n >= m >= 0, a(n, m) := 0 if n
Column m recursion: a(n, m)= sum(a(j, m), j=m..n-1)+ A055249(n, m), n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (((1-x)^2)/(1-2*x)^3)*(x/(1-x))^m, m >= 0.
T(n, k) = binomial(n, k)*hypergeom([3, k - n], [k + 1], -1). - Peter Luschny, Sep 23 2024

A094305 Triangle read by rows: T(n,k) = ((n+1)(n+2)/2) * binomial(n,k) (0 <= k <= n).

Original entry on oeis.org

1, 3, 3, 6, 12, 6, 10, 30, 30, 10, 15, 60, 90, 60, 15, 21, 105, 210, 210, 105, 21, 28, 168, 420, 560, 420, 168, 28, 36, 252, 756, 1260, 1260, 756, 252, 36, 45, 360, 1260, 2520, 3150, 2520, 1260, 360, 45, 55, 495, 1980, 4620, 6930, 6930, 4620, 1980, 495, 55, 66
Offset: 0

Author

Amarnath Murthy, Apr 29 2004

Keywords

Comments

Sum of all possible sums of k+1 numbers chosen from among the first n+1 numbers. Additive analog of triangle of Stirling numbers of first kind (A008275). - David Wasserman, Oct 04 2007
Third slice along the 1-2-plane in the cube a(m,n,o) = a(m-1,n,o)+a(m,n-1,o)+a(m,n,o-1) with a(1,0,0)=1 and a(m<>1=0,n>=0,0>=o)=0, for which the first slice is Pascal's triangle (slice read by antidiagonals). - Thomas Wieder, Aug 06 2006
Triangle T(n,k), 0<=k<=n, read by rows given by [3,-1,2/3,-1/6,1/2,0,0,0,0,0,0,...] DELTA [3,-1,2/3,-1/6,1/2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 07 2007
T(n,k) is the number of ordered triples of bit strings with n bits and exactly k 1's over all bits in the triple. For example for n=1 we have (0,e,e),(e,0,e),(e,e,0),(1,e,e),(e,1,e),(e,e,1) where e is the empty string. - Geoffrey Critzer, Apr 06 2013
T(n,k) = A000217(n+1) * A007318(n,k), 0 <= k <= n. - Reinhard Zumkeller, Jul 30 2013

Examples

			Triangle begins:
  1
  3 3
  6 12 6
  10 30 30 10
  15 60 90 60 15
  21 105 210 210 105 21
  ...
The n-th row is the product of the n-th triangular number and the n-th row of Pascal's triangle. The fifth row is (15,60,90,60,15) or 15*{1,4,6,4,1}.
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 152.

Crossrefs

For a closely related array that also includes a row and column of zeros see A129533.
Columns include A000217. Row sums are A001788. Cf. A094306.

Programs

  • Haskell
    a094305 n k = a094305_tabl !! n !! k
    a094305_row n = a094305_tabl !! n
    a094305_tabl = zipWith (map . (*)) (tail a000217_list) a007318_tabl
    -- Reinhard Zumkeller, Jul 30 2013
  • Maple
    A094305:= proc(n,k) (n+1)*(n+2)/2 * binomial(n,k); end;
  • Mathematica
    nn=10; f[list_]:=Select[list,#>0&];a=1/(1-x-y x); Map[f,CoefficientList[Series[a^3,{x,0,nn}],{x,y}]]//Grid
    (* Geoffrey Critzer, Apr 06 2013 *)
    Flatten[Table[((n+1)(n+2))/2 Binomial[n,k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Aug 31 2014 *)

Formula

T(n,k) = Sum_{i=1..k+1} (-1)^(i+1)*i^2*binomial(n+2,k+i+1)*binomial(n+2,k-i+1). - Mircea Merca, Apr 05 2012
O.g.f.: 1/(1 - x - y*x)^3. - Geoffrey Critzer, Apr 06 2013

Extensions

Edited by Ralf Stephan, Feb 04 2005
Further comments from David Wasserman, Oct 04 2007
Further editing by N. J. A. Sloane, Oct 07 2007

A050988 6-idempotent numbers.

Original entry on oeis.org

1, 42, 1008, 18144, 272160, 3592512, 43110144, 480370176, 5043886848, 50438868480, 484213137408, 4489976365056, 40409787285504, 354362750042112, 3037395000360960, 25514118003032064, 210491473525014528, 1708695490967764992, 13669563927742119936, 107917609955858841600
Offset: 6

Keywords

Comments

Number of n-permutations of 7 objects: s, t, u, v, z, x, y with repetition allowed, containing exactly six u's. - Zerinvary Lajos, Jun 16 2008

Programs

Formula

a(n) = binomial(n,6)*6^(n-6).
G.f.: x^6/(1-6*x)^7. - Zerinvary Lajos, Aug 09 2008
From Amiram Eldar, Apr 17 2022: (Start)
Sum_{n>=6} 1/a(n) = 102561/5 - 112500*log(6/5).
Sum_{n>=6} (-1)^n/a(n) = 605052*log(7/6) - 466341/5. (End)

A099089 Riordan array (1, 2+x).

Original entry on oeis.org

1, 0, 2, 0, 1, 4, 0, 0, 4, 8, 0, 0, 1, 12, 16, 0, 0, 0, 6, 32, 32, 0, 0, 0, 1, 24, 80, 64, 0, 0, 0, 0, 8, 80, 192, 128, 0, 0, 0, 0, 1, 40, 240, 448, 256, 0, 0, 0, 0, 0, 10, 160, 672, 1024, 512, 0, 0, 0, 0, 0, 1, 60, 560, 1792, 2304, 1024, 0, 0, 0, 0, 0, 0, 12, 280, 1792, 4608, 5120, 2048
Offset: 0

Author

Paul Barry, Sep 25 2004

Keywords

Comments

Row sums are A000129. Diagonal sums are A008346. The Riordan array (1, s+tx) defines T(n,k) = binomial(k,n-k)*s^k*(t/s)^(n-k). The row sums satisfy a(n) = s*a(n-1) + t*a(n-2) and the diagonal sums satisfy a(n) = s*a(n-2) + t*a(n-3).
Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1/2, -1/2, 0, 0, 0, 0, ...] DELTA [2, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 10 2008
As an upper right triangle (in the example), table rows give number of points, edges, faces, cubes, 4D hypercubes etc. in hypercubes of increasing dimension by column. - Henry Bottomley, Apr 14 2000. More precisely, the (i,j)-th entry is the number of j-dimensional subspaces of an i-dimensional hypercube (see the Coxeter reference). - Christof Weber, May 08 2009

Examples

			Triangle begins:
  1;
  0,  2;
  0,  1,  4;
  0,  0,  4,  8;
  0,  0,  1, 12, 16;
  0,  0,  0,  6, 32, 32;
  0,  0,  0,  1, 24, 80, 64;
The entries can also be interpreted as the antidiagonal reading of the following array:
  1,    2,    4,    8,   16,   32,   64,  128,  256,  512, 1024,... A000079
  0,    1,    4,   12,   32,   80,  192,  448, 1024, 2304, 5120,... A001787
  0,    0,    1,    6,   24,   80,  240,  672, 1792, 4608,11520,... A001788
  0,    0,    0,    1,    8,   40,  160,  560, 1792, 5376,15360,... A001789
  0,    0,    0,    0,    1,   10,   60,  280, 1120, 4032,13440,...
  0,    0,    0,    0,    0,    1,   12,   84,  448, 2016, 8064,...
  0,    0,    0,    0,    0,    0,    1,   14,  112,  672, 3360,...
  0,    0,    0,    0,    0,    0,    0,    1,   16,  144,  960,...
  0,    0,    0,    0,    0,    0,    0,    0,    1,   18,  180,...
  0,    0,    0,    0,    0,    0,    0,    0,    0,    1,   20,...
  0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    1,...
		

References

  • H. S. M. Coxeter, Regular Polytopes, Dover Publications, New York (1973), p. 122.

Crossrefs

Formula

Number triangle T(n,k) = binomial(k, n-k)*2^k*(1/2)^(n-k); columns have g.f. (2*x+x^2)^k.
G.f.: 1/(1-2y*x-y*x^2). - Philippe Deléham, Nov 20 2011
Sum_ {k=0..n} T(n,k)*x^k = A000007(n), A000129(n+1), A090017(n+1), A090018(n), A190510(n+1), A190955(n+1) for x = 0,1,2,3,4,5 respectively. - Philippe Deléham, Nov 20 2011
T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = 0, T(1,1) = 2, T(2,1) = 1, T(2,2) = 4, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 30 2013

A085452 Triangle T(n,k) read by rows: T(n,k) = number of cycles of length 2k in the binary n-cube, for n >= 2, k = 2, 3, ..., 2^(n-1).

Original entry on oeis.org

1, 6, 16, 6, 24, 128, 696, 2112, 5024, 5376, 1344, 80, 640, 6720, 68736, 591200, 4652160, 32146800, 185285120, 865894848, 3136412160, 8315531200, 14800412160, 15448366080, 7413471744, 906545760, 240, 2560, 39840, 698112, 12226560, 203258880, 3257746560
Offset: 2

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 12 2003

Keywords

Comments

Row n contains 2^(n-1)-1 terms.
Also the triangle of even-order coefficients (odd coefficients are all 0) of the hypercube graph cycle polynomials ordered from smallest to largest exponent starting with x^4. - Eric W. Weisstein, Feb 05 2014

Examples

			Triangle begins:
1,
6, 16, 6,
24, 128, 696, 2112, 5024, 5376, 1344,
80, 640, 6720, 68736, 591200, 4652160, 32146800, 185285120, 865894848, 3136412160, 8315531200, 14800412160, 15448366080, 7413471744, 906545760,
....
In terms of cycle polynomials:
x^4
6*x^4 + 16*x^6 + 6*x^8
24*x^4 + 128*x^6 + 696*x^8 + 2112*x^10 + 5024*x^12 + 5376*x^14 + 1344*x^16
...
		

References

  • Initial terms computed by Daniele Degiorgi (danieled(AT)inf.ethz.ch).

Crossrefs

Cf. A066037, A001788. Row sums give A085408.

Programs

  • Mathematica
    Table[Table[Length[FindCycle[HypercubeGraph[n], {k}, All]], {k, 4, 2^n, 2}], {n, 4}] // Flatten (* Eric W. Weisstein, Mar 23 2020 *)

Extensions

Corrected by Andrew Weimholt, Nov 14 2009
Initial terms of T(6,k) from Eric W. Weisstein, Mar 23 2020

A130810 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 4-subsets of X containing none of X_i, (i=1,...,n).

Original entry on oeis.org

16, 80, 240, 560, 1120, 2016, 3360, 5280, 7920, 11440, 16016, 21840, 29120, 38080, 48960, 62016, 77520, 95760, 117040, 141680, 170016, 202400, 239200, 280800, 327600, 380016, 438480, 503440, 575360, 654720, 742016, 837760, 942480, 1056720
Offset: 4

Author

Milan Janjic, Jul 16 2007

Keywords

Comments

Number of n permutations (n>=4) of 3 objects u,v,z, with repetition allowed, containing n-4 u's. Example: if n=4 then n-4 =(0) zero u, a(1)=16 because we have vvvv zzzz vvvz zzzv vvzv zzvz vzvv zvzz zvvv vzzz vvzz zzvv vzvz zvzv zvvz vzzv. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 3-dimensional elements in an n-cross polytope where n>=4. - Patrick J. McNab, Jul 06 2015

Programs

  • Maple
    a:= n-> binomial(2*n,4) +binomial(n,2) -n*binomial(2*n-2,2);
    seq(binomial(n, n-4)*2^4, n=4..37); # Zerinvary Lajos, Dec 07 2007
  • Mathematica
    a[n_] := 16 * Binomial[n, 4]; Array[a, 34, 4] (* Amiram Eldar, Jul 25 2025 *)
  • PARI
    a(n) = 16 * binomial(n, 4); \\ Amiram Eldar, Jul 25 2025

Formula

a(n) = binomial(2*n,4) + binomial(n,2) - n*binomial(2*n-2,2).
a(n) = binomial(n,4)*16. - Zerinvary Lajos, Dec 07 2007
G.f.: 16*x^4/(1-x)^5. - Colin Barker, Apr 14 2012
a(n) = 2*n*(n-1)*(n-2)*(n-3)/3 = 2*A162668(n-3). - Robert Israel, Jul 06 2015
a(n) = 16 * A000332(n). - Alois P. Heinz, Oct 26 2020
E.g.f.: 2*exp(x)*x^4/3. - Stefano Spezia, Jul 17 2025
From Amiram Eldar, Jul 25 2025: (Start)
Sum_{n>=4} 1/a(n) = 1/12.
Sum_{n>=4} (-1)^n/a(n) = 2*log(2) - 4/3. (End)

A178987 a(n) = n*(n-3)*2^(n-2).

Original entry on oeis.org

0, -1, -2, 0, 16, 80, 288, 896, 2560, 6912, 17920, 45056, 110592, 266240, 630784, 1474560, 3407872, 7798784, 17694720, 39845888, 89128960, 198180864, 438304768, 964689920, 2113929216, 4613734400, 10032775168, 21743271936, 46976204800, 101200166912
Offset: 0

Author

Paul Curtz, Jan 03 2011

Keywords

Comments

Binomial transform of 0, -1 followed by A005563.
The sequence defines an array by adding higher order differences in successive rows:
0, -1, -2, 0, 16, 80, 288, 896, 2560, 6912, 17920, 45056, 110592, ...
-1, -1, 2, 16, 64, 208, 608, 1664, 4352, 11008, 27136, 65536, ... A127276
0, 3, 14, 48, 144, 400, 1056, 2688, 6656, 16128, 38400, 90112, 208896, ... A176027
3, 11, 34, 96, 256, 656, 1632, 3968, 9472, 22272, 51712, 118784, ... A084266
8, 23, 62, 160, 400, 976, 2336, 5504, 12800, 29440, 67072, ...
The left column of the array (binomial transform of the sequence) is A067998.
For n>2, the sequence gives the number of permutations in the symmetric group S_{n+1} with peaks exactly in positions 2 and n-1. See Theorem 10 in [Billey-Burdzy-Sagan] reference.

Crossrefs

Cf. A176027.

Programs

  • Magma
    [n*(n-3)*2^(n-2): n in [0..30]]; // Vincenzo Librandi, Aug 04 2011
  • Mathematica
    Table[n(n-3)2^(n-2),{n,0,30}] (* or *) LinearRecurrence[{6,-12,8},{0,-1,-2},30] (* Harvey P. Dale, Mar 24 2023 *)

Formula

a(n) = 16*A001793(n-3), n > 3.
a(n) = 8*A001788(n-2)-A052481(n-1). - R. J. Mathar, Jan 04 2011
a(n) = +6*a(n-1) -12*a(n-2) +8*a(n-3).
a(n+1)-a(n) = -A127276(n).
G.f.: -x*(-1+4*x)/(2*x-1)^3. - R. J. Mathar, Jan 04 2011
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} (k-1) * C(n-1,i). - Wesley Ivan Hurt, Sep 20 2017
a(n) = Sum_{k=0..n} k^2 * (-1)^k * 3^(n-k) * binomial(n,k). - Seiichi Manyama, Apr 18 2025

A059300 Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 4.

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 12, 24, 4, 1, 20, 90, 80, 5, 1, 30, 240, 540, 240, 6, 1, 42, 525, 2240, 2835, 672, 7, 1, 56, 1008, 7000, 17920, 13608, 1792, 8, 1, 72, 1764, 18144, 78750, 129024, 61236, 4608, 9, 1, 90, 2880, 41160, 272160, 787500, 860160, 262440, 11520, 10
Offset: 0

Author

N. J. A. Sloane, Jan 25 2001

Keywords

Examples

			Triangle begins:
1;
1,  2;
1,  6,   3;
1, 12,  24,    4;
1, 20,  90,   80,    5;
1, 30, 240,  540,  240,   6;
1, 42, 525, 2240, 2835, 672, 7;
...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

Crossrefs

There are 4 versions: A059297-A059300. Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc. Row sums are A000248.

Programs

  • Magma
    /* As triangle: */ [[Binomial(n+1,n-k+1)*(n-k+1)^k: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
    
  • Mathematica
    t[n_, k_] := Binomial[n + 1, k]*(n - k + 1)^k; Flatten@Table[t[n, k], {n, 0, 9}, {k, 0, n}] (* Arkadiusz Wesolowski, Mar 23 2013 *)
  • PARI
    for(n=0, 25, for(k=0, n, print1(binomial(n+1,k)*(n-k+1)^k, ", "))) \\ G. C. Greubel, Jan 05 2017

Formula

T(n,k) = binomial(n+1,n-k+1)*(n-k+1)^k. - R. J. Mathar, Mar 14 2013
Previous Showing 41-50 of 109 results. Next