cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 529 results. Next

A197070 Decimal expansion of the Dirichlet eta-function at 3.

Original entry on oeis.org

9, 0, 1, 5, 4, 2, 6, 7, 7, 3, 6, 9, 6, 9, 5, 7, 1, 4, 0, 4, 9, 8, 0, 3, 6, 2, 1, 1, 3, 3, 5, 8, 7, 4, 9, 3, 0, 7, 3, 7, 3, 9, 7, 1, 9, 2, 5, 5, 3, 7, 4, 1, 6, 1, 3, 4, 4, 2, 0, 3, 6, 6, 6, 5, 0, 6, 3, 7, 8, 6, 5, 4, 3, 3, 9
Offset: 0

Views

Author

R. J. Mathar, Oct 09 2011

Keywords

Comments

This constant is irrational by Apéry's theorem. - Charles R Greathouse IV, Feb 11 2024

Examples

			0.9015426773696957140498036211335874930737...
		

Crossrefs

Cf. A002117 (zeta(3)), A058312, A058313, A072691, A136675, A233090 (5*zeta(3)/8), A233091 (7*zeta(3)/8), A334582.

Programs

Formula

Equals 3*zeta(3)/4 = 3*A002117/4.
Also equals the integral over the unit cube [0,1]x[0,1]x[0,1] of 1/(1+x*y*z) dx dy dz. - Jean-François Alcover, Nov 24 2014
Equals Sum_{n>=1} (-1)^(n+1)/n^3. - Terry D. Grant, Aug 03 2016
Equals Lim_{n -> infinity} A136675(n)/A334582(n). - Petros Hadjicostas, May 07 2020
Equals Sum_{n>=1} AH(2*n)/n^2, where AH(n) = Sum_{k=1..n} (-1)^(k+1)/k = A058313(n)/A058312(n) is the n-th alternating harmonic number (Stewart, 2020). - Amiram Eldar, Oct 04 2021
Equals -int_0^1 log(x)log(1+x)/x dx [Barbieri] - R. J. Mathar, Jun 07 2024

A035528 Euler transform of A027656(n-1).

Original entry on oeis.org

0, 1, 1, 3, 3, 6, 9, 13, 19, 28, 42, 57, 84, 115, 164, 227, 313, 429, 588, 799, 1079, 1461, 1952, 2617, 3480, 4627, 6111, 8072, 10604, 13905, 18181, 23701, 30828, 39990, 51763, 66822, 86124, 110687, 142039, 181841, 232409, 296401, 377419, 479635, 608558, 770818
Offset: 0

Views

Author

Keywords

Comments

Also the weigh transform of A003602. - John Keith, Nov 17 2021

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[-1 + Product[1/(1 - x^(2*k-1))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
    nmax = 100; Flatten[{0, Rest[CoefficientList[Series[E^Sum[1/j*x^j/(1 - x^(2*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]]}] (* Vaclav Kotesovec, Oct 10 2015 *)

Formula

a(n) ~ A^(1/2) * Zeta(3)^(11/72) * exp(-1/24 - Pi^4/(1728*Zeta(3)) + Pi^2 * n^(1/3)/(3*2^(8/3)*Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3)/2^(4/3)) / (sqrt(3*Pi) * 2^(71/72) * n^(47/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Oct 02 2015

A233091 Decimal expansion of Sum_{i>=0} 1/(2*i+1)^3.

Original entry on oeis.org

1, 0, 5, 1, 7, 9, 9, 7, 9, 0, 2, 6, 4, 6, 4, 4, 9, 9, 9, 7, 2, 4, 7, 7, 0, 8, 9, 1, 3, 2, 2, 5, 1, 8, 7, 4, 1, 9, 1, 9, 3, 6, 3, 0, 0, 5, 7, 9, 7, 9, 3, 6, 5, 2, 1, 5, 6, 8, 2, 3, 7, 6, 1, 0, 9, 2, 4, 1, 0, 8, 4, 3, 0, 0, 6, 3, 0, 2, 3, 9, 5, 3, 9, 1, 3, 1
Offset: 1

Views

Author

Bruno Berselli, Dec 04 2013

Keywords

Comments

This constant is irrational. - Charles R Greathouse IV, Feb 03 2025

Examples

			1.0517997902646449997247708913225187419193630057979365215682376109241...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 42.

Crossrefs

Cf. A002117: zeta(3); A197070: 3*zeta(3)/4; A233090: 5*zeta(3)/8.
Cf. A153071: sum( i >= 0, (-1)^i/(2*i+1)^3 ).
Cf. A251809: sum( i >= 0, (-1)^floor(i/2)/(2*i+1)^3 ).
Cf. A016755.

Programs

  • Mathematica
    RealDigits[7 Zeta[3]/8, 10, 90][[1]]
  • PARI
    7*zeta(3)/8 \\ Stefano Spezia, Oct 31 2024

Formula

Equals 7*zeta(3)/8.
Also equals -(1/16)*PolyGamma(2, 1/2). - Jean-François Alcover, Dec 18 2013
Equals Integral_{x=0..Pi/2} x * log(tan(x)) dx. - Amiram Eldar, Jun 29 2020
Equals Integral_{x=0..1} arcsin(x)*arccos(x)/x dx. - Amiram Eldar, Aug 03 2020

A258343 Expansion of Product_{k>=1} (1+x^k)^(k*(k+1)*(k+2)/6).

Original entry on oeis.org

1, 1, 4, 14, 36, 101, 260, 669, 1669, 4116, 9932, 23636, 55483, 128532, 294422, 667026, 1496232, 3324720, 7323570, 15998749, 34679966, 74622839, 159454379, 338472749, 713956569, 1496950669, 3120663129, 6469901522, 13343153563, 27379250529, 55907749171
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(binomial(i+2, 3), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 28 2018
  • Mathematica
    nmax=40; CoefficientList[Series[Product[(1+x^k)^(k*(k+1)*(k+2)/6),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ (3*Zeta(5))^(1/10) / (2^(523/720) * 5^(2/5) * sqrt(Pi) * n^(3/5)) * exp(-2401 * Pi^16 / (10497600000000 * Zeta(5)^3) + 49*Pi^8 * Zeta(3) / (16200000 * Zeta(5)^2) - Zeta(3)^2 / (150*Zeta(5)) + (343*Pi^12 / (2430000000 * 2^(3/5) * 15^(1/5) * Zeta(5)^(11/5)) - 7*Pi^4 * Zeta(3) / (4500 * 2^(3/5) * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-49*Pi^8 / (1080000 * 2^(1/5) * 15^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(6/5) * (15*Zeta(5))^(2/5))) * n^(2/5) + 7*Pi^4 / (180 * 2^(4/5) * (15*Zeta(5))^(3/5)) * n^(3/5) + 5*(15*Zeta(5))^(1/5) / 2^(12/5) * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663.
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^4)). - Ilya Gutkovskiy, May 28 2018

A183097 a(n) = sum of powerful divisors d (including 1) of n.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 13, 10, 1, 1, 5, 1, 1, 1, 29, 1, 10, 1, 5, 1, 1, 1, 13, 26, 1, 37, 5, 1, 1, 1, 61, 1, 1, 1, 50, 1, 1, 1, 13, 1, 1, 1, 5, 10, 1, 1, 29, 50, 26, 1, 5, 1, 37, 1, 13, 1, 1, 1, 5, 1, 1, 10, 125, 1, 1, 1, 5, 1, 1, 1, 130, 1, 1, 26, 5, 1, 1, 1, 29, 118, 1, 1, 5, 1, 1, 1, 13, 1, 10, 1, 5, 1, 1, 1, 61, 1, 50, 10, 130
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

Sequence is not the same as A091051(n); a(72) = 130, A091051(72) = 58.
a(n) = sum of divisors d of n from set A001694 - powerful numbers.

Examples

			For n = 12, set of such divisors is {1, 4}; a(12) = 1+4 = 5.
		

Crossrefs

Programs

  • Maple
    A183097 := proc(n)
        local a,pe,p,e ;
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if e > 1 then
                a := a* ( (p^(e+1)-1)/(p-1)-p) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Jun 02 2020
  • Mathematica
    fun[p_,e_] := (p^(e+1)-1)/(p-1) - p; a[1] = 1; a[n_] := Times @@ (fun @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, May 14 2019 *)
  • PARI
    A183097(n) = sumdiv(n, d, ispowerful(d)*d); \\ Antti Karttunen, Oct 07 2017
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2]+1)-1) / (f[i,1]-1) - f[i,1]);} \\ Amiram Eldar, Dec 24 2023

Formula

a(n) = A000203(n) - A183098(n) = A183100(n) + 1.
a(1) = 1, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = ((p^(k+1)-1) / (p-1))-p, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
From Amiram Eldar, Dec 24 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * zeta(3*s-3) / zeta(6*s-6).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)^2/(3*zeta(3)) = 1.892451... . (End)

A073000 Decimal expansion of arctangent of 1/2.

Original entry on oeis.org

4, 6, 3, 6, 4, 7, 6, 0, 9, 0, 0, 0, 8, 0, 6, 1, 1, 6, 2, 1, 4, 2, 5, 6, 2, 3, 1, 4, 6, 1, 2, 1, 4, 4, 0, 2, 0, 2, 8, 5, 3, 7, 0, 5, 4, 2, 8, 6, 1, 2, 0, 2, 6, 3, 8, 1, 0, 9, 3, 3, 0, 8, 8, 7, 2, 0, 1, 9, 7, 8, 6, 4, 1, 6, 5, 7, 4, 1, 7, 0, 5, 3, 0, 0, 6, 0, 0, 2, 8, 3, 9, 8, 4, 8, 8, 7, 8, 9, 2, 5, 5, 6, 5, 2, 9
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

The angle at which you must shoot a cue ball on a standard pool table so that it will strike all four sides and return to its origin. [Barrow] - Robert G. Wilson v, Nov 29 2015

Examples

			Arctan(1/2)
=0.463647609000806116214256231461214402028537054286120263810933088720197864165... radians
=26°.56505117707798935157219372045329467120421429964522102798601631528806582148474...
=26°33'.9030706246793610943316232271976802722528579787132616791609789172839492890...
=26°33'54".184237480761665659897393631860816335171478722795700749658735037036957...
complement = 63°.43494882292201064842780627954670532879578570035477897201398368471...
supplement = 153°.4349488229220106484278062795467053287957857003547789720139836847...
		

References

  • John D. Barrow, One Hundred Essential Things You Didn't Know You Didn't Know, W. W. Norton & Co., NY & London, 2008.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 242.

Crossrefs

Programs

  • Maple
    evalf(arctan(0.5)) ; # R. J. Mathar, Aug 22 2013
  • Mathematica
    RealDigits[ ArcTan[1/2], 10, 110] [[1]]
  • PARI
    default(realprecision,2000); atan(1/2) \\ Anders Hellström, Nov 30 2015

Formula

Equals Pi/2 - A105199 = A019669-A105199. - R. J. Mathar, Aug 21 2013
From Peter Bala, Feb 04 2015: (Start)
Arctan(1/2) = 1/2*Sum_{k >= 0} (-1)^k/((2*k + 1)*4^k).
Define a pair of integer sequences A(n) = 4^n*(2*n + 1)!/n! and B(n) = A(n)*Sum_{k = 0..n} (-1)^k/((2*k + 1)*4^k). Both sequences satisfy the same second order recurrence equation u(n) = (12*n + 10)*u(n-1) + 16*(2*n - 1)^2*u(n-2). From this observation we obtain the continued fraction expansion 2*arctan(1/2) = 1 - 2/(24 + 16*3^2/(34 + 16*5^2/(46 + ... + 16*(2*n - 1)^2/((12*n + 10) + ...)))). See A002391, A105531 and A002162 for similar expansions.
Arctan(1/2) = 2/5 * Sum_{k >= 0} (4/5)^k/((2*k + 1)*binomial(2*k,k)).
Define a pair of integer sequences C(n) = 5^n*(2*n + 1)!/n! and D(n) = C(n)*Sum_{k = 0..n} (4/5)^k/((2*k + 1)*binomial(2*k,k)). Both sequences satisfy the same second order recurrence equation u(n) = (24*n + 10)*u(n-1) - 40*n*(2*n - 1)^2*u(n-2). From this observation we obtain the continued fraction expansion 5/2*arctan(1/2) = 1 + 4/(30 - 240/(58 - 600/(82 - ... - 40*n*(2*n - 1)/((24*n + 10) - ... )))).
Arctan(1/2) = 2/25 * Sum_{k >= 0} (24*k + 17)*(4/5)^(2*k)/( (4*k + 1)*(4*k + 3)*binomial(4*k,2*k) ).
Arctan(1/2) = 2/125 * Sum_{k >= 0} (1116*k^2 + 1446*k + 433)*(4/5)^(3*k)/( (6*k + 1)*(6*k + 3)*(6*k + 5)*binomial(6*k,3*k) ). (End)
Equals Integral_{x = 0..oo} exp(-2*x)*sin(x)/x dx. - Peter Bala, Nov 05 2019
Equals 2 * arccot(phi^3), where phi is the golden ratio (A001622). - Amiram Eldar, Jul 06 2023
Equals Sum_{n >= 1} i/(n*P(n, 2*i)*P(n-1, 2*i)) = (1/2)*Sum_{n >= 1} (-1)^(n+1)*4^n/(n*A098443(n)*A098443(n-1)), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The n-th summand of the series is O( 1/(3 + 2*sqrt(2))^n ). - Peter Bala, Mar 16 2024

A051675 "Second factorials": Product_{k=1..n} k^(k^2).

Original entry on oeis.org

1, 16, 314928, 1352605460594688, 403107840000000000000000000000000, 4157825501361955044460594652554199040000000000000000000000000
Offset: 1

Views

Author

Keywords

References

  • Spyros G. Kanellos: Mathematical Researches and Results [in Greek]. Athens, 1965.

Crossrefs

Programs

  • Magma
    [(&*[k^(k^2): k in [1..n]]): n in [1..10]]; // G. C. Greubel, Oct 14 2018
  • Maple
    A051675 := proc(n) local k; mul(k^(k^2),k=1..n); end;
  • Mathematica
    Table[Product[k^(k^2),{k,1,n}],{n,1,10}] (* Vaclav Kotesovec, Feb 20 2015 *)
  • PARI
    for(n=1, 10, print1(prod(k=1,n, k^(k^2)), ", ")) \\ G. C. Greubel, Oct 14 2018
    

Formula

a(n) ~ n^(n*(n+1)*(2n+1)/6) / exp(n^3/9 - n/12 - Zeta(3)/(4*Pi^2)), where Zeta(3) = A002117 = 1.2020569031595942853997... . - Vaclav Kotesovec, Feb 20 2015

A161870 Convolution square of A000219.

Original entry on oeis.org

1, 2, 7, 18, 47, 110, 258, 568, 1237, 2600, 5380, 10870, 21652, 42350, 81778, 155676, 292964, 544846, 1003078, 1828128, 3301952, 5911740, 10499385, 18502582, 32371011, 56240816, 97073055, 166497412, 283870383, 481212656, 811287037, 1360575284, 2270274785, 3769835178, 6230705170, 10251665550, 16794445441
Offset: 0

Views

Author

Gary W. Adamson, Jun 20 2009

Keywords

Comments

Equals [1,2,3,...] * [1,0,4,0,10,0,20,...] * [1,0,0,6,0,0,21,...] * [1,0,0,0,8,0,0,0,36,...] * ... - Gary W. Adamson, Jul 06 2009
Number of pairs of planar partitions of u and v where u + v = n. - Joerg Arndt, Apr 22 2014

Crossrefs

Cf. A000219.
Column k=2 of A255961.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, 2*add(
          a(n-j)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 12 2015
  • Mathematica
    nn = 36; CoefficientList[Series[Product[1/(1 - x^i)^(2 i), {i, 1, nn}] , {x, 0, nn}], x] (* Geoffrey Critzer, Nov 29 2014 *)
  • PARI
    N=66;x='x+O('x^N); Vec(1/prod(k=1,N,(1-x^k)^k)^2) \\ Joerg Arndt, Apr 22 2014

Formula

G.f.: 1 / prod(k>=1, (1-x^k)^k )^2. - Joerg Arndt, Apr 22 2014
a(n) ~ Zeta(3)^(2/9) * exp(1/6 + 3*n^(2/3)*(Zeta(3)/2)^(1/3)) / (A^2 * 2^(1/18) * sqrt(3*Pi) * n^(13/18)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Feb 27 2015
G.f.: exp(2*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 29 2018

Extensions

Added more terms, Joerg Arndt, Apr 22 2014

A183699 Decimal expansion of zeta(2)*zeta(3), the product of two Riemann zeta values.

Original entry on oeis.org

1, 9, 7, 7, 3, 0, 4, 3, 5, 0, 2, 9, 7, 2, 9, 6, 1, 1, 8, 1, 9, 7, 0, 8, 5, 4, 4, 1, 4, 8, 5, 1, 2, 5, 5, 7, 2, 0, 8, 2, 1, 5, 1, 4, 6, 6, 6, 6, 0, 1, 3, 4, 2, 0, 8, 6, 9, 5, 8, 2, 2, 2, 7, 7, 0, 5, 4, 7, 1, 5, 0, 3, 4, 1, 4, 6, 6, 0, 4, 2, 0, 7, 7, 0, 2, 3, 8, 4, 3, 7, 2, 5, 2, 1, 7, 4, 9, 6, 0, 7, 3, 7, 2, 0, 9, 4, 2, 8, 5, 8, 1, 3, 3, 5, 4, 1, 2, 9, 7, 8, 2, 2, 3, 7, 5, 9, 0, 2, 6, 3, 3, 1, 1, 4, 1, 4, 6, 6, 4, 0, 2, 0, 1, 0, 5, 9, 3, 6, 3, 6, 8, 3, 2
Offset: 1

Views

Author

R. J. Mathar, Jan 06 2011

Keywords

Comments

Equals the Dirichlet zeta-function Sum_{n>=1} A000203(n)/n^s at s=3.

Examples

			Equals 1.977304350297296118197085441485...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(2)*Zeta(3));
  • Mathematica
    RealDigits[Zeta[2] * Zeta[3], 10, 120][[1]] (* Amiram Eldar, Jun 12 2023 *)
  • PARI
    zeta(2)*zeta(3) \\ Charles R Greathouse IV, Mar 04 2015

Formula

Equals A013661 * A002117.

A262811 Expansion of Product_{k>=1} 1/(1-x^(2*k-1))^(2*k-1).

Original entry on oeis.org

1, 1, 1, 4, 4, 9, 15, 22, 37, 56, 92, 133, 210, 310, 466, 696, 1013, 1495, 2160, 3141, 4495, 6462, 9172, 13024, 18387, 25840, 36213, 50500, 70280, 97302, 134522, 185105, 254245, 347938, 475036, 646676, 878145, 1189468, 1607095, 2166672, 2913794, 3910741
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 03 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(d::even, 0, d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Oct 05 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1-x^(2*k-1))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(-1/12 + 3*Zeta(3)^(1/3)*n^(2/3)/2) * A * Zeta(3)^(5/36) / (2^(2/3) * sqrt(3*Pi) * n^(23/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A050999(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 09 2017
Previous Showing 41-50 of 529 results. Next