A271224
Digits of one of the two 3-adic integers sqrt(-2). Here the sequence with first digit 2.
Original entry on oeis.org
2, 1, 0, 2, 2, 0, 2, 1, 2, 2, 2, 0, 1, 0, 2, 1, 2, 1, 1, 2, 0, 0, 2, 1, 1, 1, 0, 0, 0, 2, 2, 2, 0, 1, 2, 1, 0, 2, 0, 0, 2, 0, 2, 1, 0, 2, 1, 0, 0, 0, 1, 2, 0, 2, 1, 0, 2, 0, 2, 2, 1
Offset: 0
a(4) = 2 because 2*59*2 + 43 = 279 == 0 (mod 3).
a(4) = - 43*(2*59) (mod 3) = -1*(2*(-1)) (mod 3) = 2.
A271222(5) = 221 = 2*3^0 + 1*3^1 + 0*3^2 + 2*3^3 + 2*3^4.
- Trygve Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, pp. 86 and 77-78.
A054488
Expansion of (1+2*x)/(1-6*x+x^2).
Original entry on oeis.org
1, 8, 47, 274, 1597, 9308, 54251, 316198, 1842937, 10741424, 62605607, 364892218, 2126747701, 12395593988, 72246816227, 421085303374, 2454265004017, 14304504720728, 83372763320351, 485932075201378, 2832219687887917
Offset: 0
8 = a(1) = sqrt((A077240(1)^2 - 17)/8) = sqrt((23^2 - 17)/8)= sqrt(64) = 8.
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
-
a:=[1,8];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 19 2020
-
I:=[1,8]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 19 2020
-
R:=PowerSeriesRing(Integers(), 21); Coefficients(R!( (1+2*x)/(1-6*x+x^2))); // Marius A. Burtea, Jan 20 2020
-
a[0]:=1: a[1]:=8: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
-
LinearRecurrence[{6,-1},{1,8},30] (* Harvey P. Dale, Oct 09 2017 *)
Table[(LucasL[2*n+1, 2] + Fibonacci[2*n, 2])/2, {n,0,30}] (* G. C. Greubel, Jan 19 2020 *)
-
my(x='x+O('x^30)); Vec((1+2*x)/(1-6*x+x^2)) \\ G. C. Greubel, Jan 19 2020
-
apply( {A054488(n)=[1,8]*([0,-1;1,6]^n)[,1]}, [0..30]) \\ M. F. Hasler, Feb 27 2020
-
[(lucas_number2(2*n+1,2,-1) + lucas_number1(2*n,2,-1))/2 for n in (0..30)] # G. C. Greubel, Jan 19 2020
A056236
a(n) = (2 + sqrt(2))^n + (2 - sqrt(2))^n.
Original entry on oeis.org
2, 4, 12, 40, 136, 464, 1584, 5408, 18464, 63040, 215232, 734848, 2508928, 8566016, 29246208, 99852800, 340918784, 1163969536, 3974040576, 13568223232, 46324811776, 158162800640, 540001579008, 1843680714752, 6294719700992
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Pooja Bhadouria, Deepika Jhala, and Bijendra Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92, sequence B_2.
- Sela Fried, Even-up words and their variants, arXiv:2505.14196 [math.CO], 2025. See p. 9.
- Takao Komatsu, Asymmetric Circular Graph with Hosoya Index and Negative Continued Fractions, arXiv:2105.08277 [math.CO], 2021.
- Youngwoo Kwon, Binomial transforms of the modified k-Fibonacci-like sequence, arXiv:1804.08119 [math.NT], 2018.
- Index entries for linear recurrences with constant coefficients, signature (4,-2).
-
LinearRecurrence[{4,-2},{2,4},30] (* Harvey P. Dale, Jan 18 2013 *)
-
a(n) = 2*real((2+quadgen(8))^n);
-
[lucas_number2(n,4,2) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
A135532
a(n) = 2*a(n-1) + a(n-2), with a(0)= -1, a(1)= 3.
Original entry on oeis.org
-1, 3, 5, 13, 31, 75, 181, 437, 1055, 2547, 6149, 14845, 35839, 86523, 208885, 504293, 1217471, 2939235, 7095941, 17131117, 41358175, 99847467, 241053109, 581953685, 1404960479, 3391874643, 8188709765, 19769294173, 47727298111, 115223890395, 278175078901, 671574048197
Offset: 0
-
I:=[-1,3]; [n le 2 select I[n] else 2*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, May 22 2021
-
LinearRecurrence[{2,1},{-1,3},25] (* G. C. Greubel, Oct 17 2016 *)
-
a(n)=([0,1; 1,2]^n*[-1;3])[1,1] \\ Charles R Greathouse IV, Oct 17 2016
-
[(lucas_number2(n,2,-1) + 2*lucas_number2(n-1,2,-1))/2 for n in (0..30)] # G. C. Greubel, May 22 2021
A164298
a(n) = ((1+4*sqrt(2))*(2+sqrt(2))^n + (1-4*sqrt(2))*(2-sqrt(2))^n)/2.
Original entry on oeis.org
1, 10, 38, 132, 452, 1544, 5272, 18000, 61456, 209824, 716384, 2445888, 8350784, 28511360, 97343872, 332352768, 1134723328, 3874187776, 13227304448, 45160842240, 154188760064, 526433355776, 1797355902976, 6136556900352, 20951515795456, 71532949381120
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(2+r)^n+(1-4*r)*(2-r)^n)/2: n in [0..27] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+6*x)/(1-4*x+2*x^2) )); // G. C. Greubel, Dec 14 2018
-
a:=n->((1+4*sqrt(2))*(2+sqrt(2))^n+(1-4*sqrt(2))*(2-sqrt(2))^n)/2: seq(floor(a(n)),n=0..25); # Muniru A Asiru, Dec 15 2018
-
LinearRecurrence[{4,-2}, {1,10}, 50] (* or *) CoefficientList[Series[(1 + 6*x)/(1 - 4*x + 2*x^2), {x,0,50}], x] (* G. C. Greubel, Sep 12 2017 *)
-
my(x='x+O('x^50)); Vec((1+6*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Sep 12 2017
-
[( (1+6*x)/(1-4*x+2*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Dec 14 2018; Mar 12 2021
A054458
Convolution triangle based on A001333(n), n >= 1.
Original entry on oeis.org
1, 3, 1, 7, 6, 1, 17, 23, 9, 1, 41, 76, 48, 12, 1, 99, 233, 204, 82, 15, 1, 239, 682, 765, 428, 125, 18, 1, 577, 1935, 2649, 1907, 775, 177, 21, 1, 1393, 5368, 8680, 7656, 4010, 1272, 238, 24, 1, 3363, 14641, 27312, 28548, 18358, 7506, 1946, 308, 27, 1
Offset: 0
Fourth row polynomial (n=3): p(3,x)= 17+23*x+9*x^2+x^3.
Triangle begins :
1
3, 1
7, 6, 1
17, 23, 9, 1
41, 76, 48, 12, 1
99, 233, 204, 82, 15, 1
239, 682, 765, 428, 125, 18, 1. - _Philippe Deléham_, Mar 25 2012
(0, 3, -2/3, -1/3, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins :
1
0, 1
0, 3, 1
0, 7, 6, 1
0, 17, 23, 9, 1
0, 41, 76, 48, 12, 1
0, 99, 233, 204, 82, 15, 1
0, 239, 682, 765, 428, 125, 15, 1. - _Philippe Deléham_, Mar 25 2012
A164600
a(n) = 18*a(n-1) - 79*a(n-2) for n > 1; a(0) = 1, a(1) = 17.
Original entry on oeis.org
1, 17, 227, 2743, 31441, 349241, 3802499, 40854943, 434991553, 4602307457, 48477201539, 509007338599, 5332433173201, 55772217368297, 582637691946467, 6081473282940943, 63438141429166081, 661450156372654961
Offset: 0
-
[ n le 2 select 16*n-15 else 18*Self(n-1)-79*Self(n-2): n in [1..18] ];
-
m:=30; S:=series( (1-x)/(1-18*x+79*x^2), x, m+1):
seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 12 2021
-
LinearRecurrence[{18,-79},{1,17},30] (* Harvey P. Dale, Oct 30 2013 *)
-
my(x='x+O('x^50)); Vec((1-x)/(1-18*x+79*x^2)) \\ G. C. Greubel, Aug 11 2017
-
[( (1-x)/(1-18*x+79*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021
A271222
One of the two successive approximations up to 3^n for the 3-adic integer sqrt(-2). These are the numbers congruent to 2 mod 3 (except for the initial 0).
Original entry on oeis.org
0, 2, 5, 5, 59, 221, 221, 1679, 3866, 16988, 56354, 174452, 174452, 705893, 705893, 10271831, 24620738, 110714180, 239854343, 627274832, 2951797766, 2951797766, 2951797766, 65713916984, 159857095811, 442286632292
Offset: 0
n=2: 5^2 + 2 = 27 == 0 (mod 3^2), and 5 is the only solution from {0, 1, ..., 8} which is congruent to 2 modulo 3.
n=3: the only solution of X^2 + 2 == 0 (mod 3^3) with X from {0, ..., 26} and X == 2(mod 3) is 5. The number 22 = A268924(3) also satisfies the first congruence but not the second one: 22 == 1 (mod 3).
n=4: the only solution of X^2 + 2 == 0 (mod 3^4) with X from {0, ..., 80} and X == 2 (mod 3) is 59. The number 22 = A268924(4) also satisfies the first congruence but not the second one: 59 == 1 (mod 3).
- Trygve Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, p. 87.
-
with(padic):D2:=op(3,op([evalp(RootOf(x^2+2),3,20)][2])): 0,seq(sum('D2[k]*3^(k-1)','k'=1..n), n=1..20);
-
a(n) = if (n, 3^n - truncate(sqrt(-2+O(3^(n)))), 0); \\ Michel Marcus, Apr 09 2016
-
def a271222(n):
ary=[0]
a, mod = 2, 3
for i in range(n):
b=a%mod
ary.append(b)
a=2*b**2 + b + 4
mod*=3
return ary
print(a271222(100)) # Indranil Ghosh, Aug 04 2017, after Ruby
-
def A271222(n)
ary = [0]
a, mod = 2, 3
n.times{
b = a % mod
ary << b
a = 2 * b * b + b + 4
mod *= 3
}
ary
end
p A271222(100) # Seiichi Manyama, Aug 03 2017
A099088
Indices of prime companion Pell numbers, divided by 2 (A001333).
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 16, 19, 29, 47, 59, 163, 257, 421, 937, 947, 1493, 1901, 6689, 8087, 9679, 28753, 79043, 129127, 145969, 165799, 168677, 170413, 172243, 278321, 552283
Offset: 1
- F. Le Lionnais, Les Nombres Remarquables. Paris: Hermann, p. 62, 1983.
-
lst={}; a=1; b=1; Do[c=a+2b; a=b; b=c; If[PrimeQ[c], AppendTo[lst, n]], {n, 2, 10000}]; lst
(* Second program: *)
Do[If[PrimeQ[Expand[((1 + Sqrt[2])^n + (1 - Sqrt[2])^n)/2]], Print[n]], {n, 0, 1000}] (* Artur Jasinski, Dec 10 2006 *)
-
isok(n) = isprime(polchebyshev(n, 1, I)/I^n); \\ Michel Marcus, Dec 07 2018
A164299
a(n) = ((1+4*sqrt(2))*(3+sqrt(2))^n + (1-4*sqrt(2))*(3-sqrt(2))^n)/2.
Original entry on oeis.org
1, 11, 59, 277, 1249, 5555, 24587, 108637, 479713, 2117819, 9348923, 41268805, 182170369, 804140579, 3549650891, 15668921293, 69165971521, 305313380075, 1347718479803, 5949117218293, 26260673951137, 115920223178771
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(3+r)^n+(1-4*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
-
LinearRecurrence[{6,-7}, {1,11}, 50] (* or *) CoefficientList[Series[(1 + 5*x)/(1 - 6*x + 7*x^2), {x,0,50}], x] (* G. C. Greubel, Sep 12 2017 *)
-
my(x='x+O('x^50)); Vec((1+5*x)/(1-6*x+7*x^2)) \\ G. C. Greubel, Sep 12 2017
-
[( (1+5*x)/(1-6*x+7*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021
Previous
Showing 61-70 of 167 results.
Next
Comments