cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 130 results. Next

A060941 Duchon's numbers: the number of paths of length 5*n from the origin to the line y = 2*x/3 with unit East and North steps that stay below the line or touch it.

Original entry on oeis.org

1, 2, 23, 377, 7229, 151491, 3361598, 77635093, 1846620581, 44930294909, 1113015378438, 27976770344941, 711771461238122, 18293652115906958, 474274581883631615, 12388371266483017545, 325714829431573496525, 8613086428709348334675, 228925936056388155632081
Offset: 0

Views

Author

Philippe Flajolet, May 12 2001

Keywords

Comments

A generalization of the ballot numbers.

Crossrefs

See A293946 for a closely related sequence, also from the Bizley paper.

Programs

  • Magma
    [&+[1/(5*n+i+1)*Binomial(5*n+1, n-i)*Binomial(5*n+2*i, i): i in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Feb 12 2016
  • Maple
    A060941 := n -> hypergeom([-n,5*n/2+1/2,5*n/2+1],[4*n+2,5*n+2],-4)* binomial(5*n,n)/(4*n+1); seq(simplify(A060941(n)),n=0..18); # Peter Luschny, Oct 05 2014
  • Mathematica
    a[n_] := ((5n)!*(5n + 1)!*HypergeometricPFQRegularized[{-n, 5n/2 + 1/2, 5n/2 + 1}, {4n + 2, 5n + 2}, -4])/n!; a /@ Range[0, 16]
    (* Jean-François Alcover, Jun 30 2011, after given formula *)
  • Sage
    A060941 = lambda n : hypergeometric([-n,5*n/2+1/2,5*n/2+1],[4*n+2,5*n+2],-4)*gamma(1+5*n)/(gamma(1+n)*gamma(2+4*n))
    [A060941(n).simplify() for n in range(19)] # Peter Luschny, Oct 05 2014
    

Formula

a(n) = Sum_{i=0..n} 1/(5*n+i+1) * C(5*n+1, n-i) * C(5*n+2*i, i).
a(n) = Sum_{i=0..2*n} (-1)^i/(5*i+1) * C((5*i+1)/2, i) * 1/(1+5*(2*n-i)) * C((1+5*(2*n-i))/2, 2*n-i).
G.f. A(z) satisfies: A(z) = 1+2*z*A^5-z*A^6+z*A^7+z^2*A^10. [Corrected by Bryan T. Ek, Oct 30 2017]
G.f.: A(z) = exp(C(5,2)*z/5 + C(10,4)*z^2/10 + C(15,6)*z^3/15 + ...). - Don Knuth, Oct 05 2014
Recurrence: 216*(n-1)*n*(2*n-1)*(3*n-4)*(3*n-2)*(3*n-1)*(3*n+1)*(6*n-1)*(6*n+1)*(5625*n^4 - 38550*n^3 + 97425*n^2 - 107784*n + 44044)*a(n) = 540*(n-1)*(3*n-4)*(3*n-2)*(126562500*n^10 - 1373625000*n^9 + 6557484375*n^8 - 18192221250*n^7 + 32549973750*n^6 - 39248008800*n^5 + 32203028675*n^4 - 17641491134*n^3 + 6113558828*n^2 - 1191132600*n + 96112128)*a(n-1) - 450*(5*n-9)*(5*n-8)*(5*n-7)*(5*n-6)*(63281250*n^9 - 718453125*n^8 + 3556125000*n^7 - 10046426250*n^6 + 17765816250*n^5 - 20240090325*n^4 + 14698993900*n^3 - 6468702396*n^2 + 1533535184*n - 142988160)*a(n-2) + 78125*(n-2)*(5*n-14)*(5*n-13)*(5*n-12)*(5*n-11)*(5*n-9)*(5*n-8)*(5*n-7)*(5*n-6)*(5625*n^4 - 16050*n^3 + 15525*n^2 - 6084*n + 760)*a(n-3). - Vaclav Kotesovec, Oct 05 2014
Asymptotics (Duchon, 2000): a(n) ~ c * (3125/108)^n / n^(3/2), where c = 0.0876612192439026461763141944768209255550234422281635788... (constant corrected, in the reference "On the enumeration and generation of generalized Dyck words", p.132 is a wrong value 0.0887). - Vaclav Kotesovec, Oct 05 2014, c = sqrt(5*(10^(2/3) - 5^(1/3)/2^(2/3) - 2))/(18*sqrt(Pi)). - Vaclav Kotesovec, Sep 16 2021
a(n) = Gamma(n+4/5)*Gamma(n+3/5)*Gamma(n+2/5)*3125^n*hypergeom([-n, (5/2)*n+1, (5/2)*n+1/2], [5*n+2, 4*n+2], -4)*Gamma(n+1/5)/ (Pi^2*csc((2/5)*Pi)*csc((1/5)*Pi)*Gamma(4*n+2)). - Robert Israel, Oct 05 2014
a(n) = A002294(n)*hypergeom([-n,5*n/2+1/2,5*n/2+1],[4*n+2,5*n+2],-4). - Peter Luschny, Oct 05 2014
O.g.f. A(x) satisfies: A(x)^5 = 1/x*series reversion( x/((1+x)*C(x))^5 ), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See A001450. - Peter Bala, Oct 05 2015
The sequence defined by b(n) := [x^n] A(x)^n begins [1, 2, 50, 1415, 42258, 1300727, 40820837, 1298493730, ...] and conjecturally satisfies the congruence b(p) == b(1) (mod p^3) for prime p >= 7 (checked up to p = 101). [Added 23 Oct 2024: More generally, let r be an integer and s a positive integer and define a sequence u(n) by u(n) = [x^(s*n)] A(x)^(r*n). Then we conjecture that the supercongruences u(n*p^k) == u(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 7 and positive integers n and k.] - Peter Bala, Sep 12 2021
Inductively define a family of sequences {a(i,n) : n >= 0}, i >= 1, by setting a(1,n) = a(n) and, for i >= 2, a(i,n) = [x^n] ( exp(Sum_{k >= 1} a(i-1,k)*x^k/k) )^n. We conjecture that the sequences {a(i,n) : n >= 0}, i >= 2, also satisfy the supercongruences u(n*p^k) == u(n*p^(k-1)) (mod p^(3*k)) for primes p >= 7 and positive integers n and k. - Peter Bala, Oct 24 2024

A001449 Binomial coefficients binomial(5n,n).

Original entry on oeis.org

1, 5, 45, 455, 4845, 53130, 593775, 6724520, 76904685, 886163135, 10272278170, 119653565850, 1399358844975, 16421073515280, 193253756909160, 2280012686716080, 26958221130508525
Offset: 0

Views

Author

Keywords

References

  • Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 2nd ed. 1994.

Crossrefs

binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).

Programs

  • Magma
    [ Binomial(5*n,n): n in [0..100] ]; // Vincenzo Librandi, Apr 13 2011
    
  • Maple
    f := n->(5*n)!/((4*n)!*(n)!);
  • Mathematica
    Table[ Binomial[5n, n], {n, 0, 18} ]
  • Maxima
    B(x):=sum(binomial(5*n,n-1)/n*x^n,n,1,30);
    taylor(x*diff(B(x),x)/B(x),x,0,10); /* Vladimir Kruchinin, Oct 05 2015 */
    
  • PARI
    a(n) = binomial(5*n, n) \\ Altug Alkan, Oct 05 2015

Formula

a(n) = (5*n)!/((4*n)!*(n)!).
a(n) is asymptotic to c*(3125/256)^n/sqrt(n), with c = sqrt(5/(8*Pi)) = 0.44603102903819277863474159... - Benoit Cloitre, Jan 23 2008
a(n) = C(5*n-1,n-1)*C(25*n^2,2)/(3*n*C(5*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
G.f.: A(x) = x*B'(x)/B(x), where B(x)+1 is g.f. of A002294. - Vladimir Kruchinin, Oct 05 2015
From Ilya Gutkovskiy, Jan 16 2017: (Start)
O.g.f.: 4F3(1/5,2/5,3/5,4/5; 1/4,1/2,3/4; 3125*x/256).
E.g.f.: 4F4(1/5,2/5,3/5,4/5; 1/4,1/2,3/4,1; 3125*x/256). (End)
a(n) = hypergeom([-4*n, -n], [1], 1). - Peter Luschny, Mar 19 2018
From Peter Bala, Feb 20 2022: (Start)
4*n(4*n-1)*(4*n-2)*(4*n-3)*a(n) = 5*(5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)*a(n-1).
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 4*A(x))^4 + 3125*x*A(x)^5 = 0.
Sum_{n >= 1} a(n)*( x*(4*x + 5)^4/(3125*(1 + x)^5) )^n = x. (End)
From Peter Bala, Oct 17 2024: (Start)
Let G******(x) denote the o.g.f. of sequence A******.
For n >= 1 , a(n) = (5/2) * [x^n] G006013(x)^n.
For n >= 1, a(n) = [x^n] (1 + x)^(5*n) = (5/4) * [x^n] (1/(1 - x))^(4*n) = (5/3) * [x^n] G000108(x)^(3*n) = (5/2) * [x^n] G001764(x)^(2*n) = 5 * [x^n] G002293(x)^n.
a(n) = 5 * [x^n] (1 - G006632(x))^(-n) = (5/2) * [x^n] (1 - x*G006013(x))^(-2*n) = (5/3) * [x^n] (1 - x*G000108(x))^(-3*n) (apply Concrete Mathematics, equation 5.60, p. 201). (End)

A059968 Number of 10-ary trees.

Original entry on oeis.org

1, 1, 10, 145, 2470, 46060, 910252, 18730855, 397089550, 8612835715, 190223180840, 4263421511271, 96723482198980, 2216905597676000, 51256802757808320, 1194060413809070710, 27999654303202465310, 660370070571422998410, 15654733143626084944150
Offset: 0

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Mar 05 2001

Keywords

Comments

From Wolfdieter Lang, Feb 06 2020: (Start)
Ninth column of triangle A062993 (without leading zeros). A Pfaff-Fuss or 10-Raney sequence.
a(n), n>=1, enumerates 10-ary trees (rooted, ordered, incomplete) with n vertices (including the root).
See Graham et al., Hilton and Pedersen, Hoggat and Bicknell, Frey and Sellers references given in A062993. (End)
This is instance k = 10 of the generalized Catalan family {C(k, n)}A130564%20-%20_Wolfdieter%20Lang">{n>=0} given in a comment of A130564 - _Wolfdieter Lang, Feb 05 2024

Examples

			There are a(2)=10 10-ary trees (vertex degree <=10 and 10 possible branchings) with 2 vertices (one of them the root). Adding one more branch (one more vertex) to these 10 trees yields 10*10+binomial(10,2)=145=a(3) such trees. - _Wolfdieter Lang_, Sep 14 2007.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, New York, 2 vols., 1972, Vol. 1, problem 211, p. 146 with solution on p. 348.

Crossrefs

Related algebraic sequences concerning trees: strictly k-ary trees (A000108: s=x+s^2, A001263: s=(x, y)+(x, s)+(s, y)+(s, s))), (A001764: s=x+s^3), (A002293: s=x+s^4), (A002294: s=x+s^5), (A002295: s=x+s^6), (A002296: s=x+s^7), (A007556: s=x+s^8), at most k-ary trees (A001006: s=x+xs+xs^2), (A036765-A036769, s=x+xs^2....+xs^k, k=3, 4, 5, 6, 7).
Cf. A130564.

Programs

  • Maple
    seq(binomial(10*k+1, k)/(9*k+1), k=0..30);
    n:=30:G:=series(RootOf(g = 1+x*g^10, g), x=0, n+1):seq(coeff(G, x, k), k=0..n); # Robert FERREOL, Apr 01 2015
  • Mathematica
    a[n_] := Binomial[10n, n]/(9n+1);
    a /@ Range[0, 25] (* Jean-François Alcover, Jan 17 2020 *)

Formula

G.f. A(x) satisfies: A = x + A^10.
a(n) = binomial(k*n, n)/((k-1)*n+1), for k=10.
Recurrence: a(0) = 1; a(n) = Sum_{i1+i2+..i10=n-1} a(i1)*a(i2)*...*a(i10) for n>=1. - Robert FERREOL, Apr 01 2015
From Wolfdieter Lang, Feb 06 2020: (Start)
a(n) = A062993(n+8, 8). [Corrected by Robert FERREOL, Apr 01 2015]
G.f.: RootOf((_Z^10)*x-_Z+1) (Maple notation, from ECS, see links for A007556).
G.f.: hypergeometric([1, 2, 3, 4, 5, 6, 7, 8, 9]/10, [2, 3, 4, 5, 6, 7, 8, 10]/9, (10^10/9^9)*x),
E.g.f.: hypergeometric([1, 2, 3, 4, 5, 6, 7, 8, 9]/10, [2, 3, 4, 5, 6, 7, 8, 9, 10]/9, (10^10/9^9)*x).
For other family members see the crossreferences.
(End)
D-finite with recurrence 81*n*(9*n-7)*(9*n-5)*(3*n-1)*(9*n-1)*(9*n+1)*(3*n-2)*(9*n-4)*(9*n-2)*a(n) -800*(10*n-9)*(5*n-4)*(10*n-7)*(5*n-3)*(2*n-1)*(5*n-2)*(10*n-3)*(5*n-1)*(10*n-1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022
a(n) ~ (10^10/9^9)^n*sqrt(10/(2*Pi*(9*n)^3)). - Robert A. Russell, Jul 15 2024
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^19). - Seiichi Manyama, Jun 16 2025

Extensions

More terms from James Sellers, Mar 15 2001
a(0)=1 inserted by Alois P. Heinz, Jan 17 2020
A062744 merged into this sequence by Wolfdieter Lang, Feb 06 2020

A062994 Eighth column of triangle A062993 (without leading zeros). A Pfaff-Fuss or 9-Raney sequence.

Original entry on oeis.org

1, 1, 9, 117, 1785, 29799, 527085, 9706503, 184138713, 3573805950, 70625252863, 1416298046436, 28748759731965, 589546754316126, 12195537924351375, 254184908607118800, 5332692942907262361
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

See Graham et al., Hilton and Pedersen, Hoggat and Bicknell, Frey and Sellers references given in A062993.
Essentially the same as A059967. a(n), n>=1, enumerates 9-ary trees (rooted, ordered, incomplete) with n vertices (including the root).
These numbers appear in a formula on p. 24 of Gross et al. for b = -2 or 4. For b = -1 or 3, see A002293.- Tom Copeland, Dec 24 2019
This is instance k = 9 of the generalized Catalan family {C(k, n)}_{n>=0} given in a comment of A130564. - Wolfdieter Lang, Feb 05 2024

Examples

			There are a(2)=9 9-ary trees (vertex degree <=9 and 9 possible branchings) with 2 vertices (one of them the root). Adding one more branch (one more vertex) to these 9 trees yields 9*9 + binomial(9,2) = 117 = a(3) such trees.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, New York, 2 vols., 1972, Vol. 1, problem. 211, p. 146 with solution on p. 348.

Crossrefs

Programs

  • Maple
    seq(binomial(9*k+1,k)/(8*k+1),k=0..30);
    n:=30: G:=series(RootOf(g = 1+x*g^9, g),x=0,n+1): seq(coeff(G,x,k),k=0..n); # Robert FERREOL, Apr 01 2015
  • Mathematica
    Table[Binomial[9n,n]/(8n+1),{n,0,30}] (* Harvey P. Dale, Oct 28 2012 *)
  • PARI
    { for (n=0, 100, write("b062994.txt", n, " ", binomial(9*n, n)/(8*n + 1)) ) } \\ Harry J. Smith, Aug 15 2009

Formula

a(n) = A062993(n+7, 7) = binomial(9*n, n)/(8*n+1).
G.f.: RootOf((_Z^9)*x-_Z+1) (Maple notation, from ECS, see links for A007556).
Recurrence: a(0) = 1; a(n) = Sum_{i1+i2+..+i9=n-1} a(i1)*a(i2)*...*a(i9) for n>=1. - Robert FERREOL, Apr 01 2015
From Ilya Gutkovskiy, Jan 16 2017: (Start)
O.g.f.: 8F7(1/9,2/9,1/3,4/9,5/9,2/3,7/9,8/9; 1/4,3/8,1/2,5/8,3/4,7/8,9/8; 387420489*x/16777216).
E.g.f.: 8F8(1/9,2/9,1/3,4/9,5/9,2/3,7/9,8/9; 1/4,3/8,1/2,5/8,3/4,7/8,1,9/8; 387420489*x/16777216).
a(n) ~ 3^(18*n+1)/(sqrt(Pi)*2^(24*n+5)*n^(3/2)). (End)
D-finite with recurrence: 128*n*(8*n-5)*(4*n-1)*(8*n+1)*(2*n-1)*(8*n-1)*(4*n-3)*(8*n-3)*a(n) -81*(9*n-7)*(9*n-5)*(3*n-1)*(9*n-1)*(9*n-8)*(3*n-2)*(9*n-4)*(9*n-2)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^17). - Seiichi Manyama, Jun 16 2025

Extensions

9-ary tree comments and Pólya and G. Szegő reference from Wolfdieter Lang, Sep 14 2007

A251592 Triangle of coefficients of polynomials P(n,t) related to the Mittag-Leffler function, where P(n,t) = Product_{k=0..n-2} n*t-k.

Original entry on oeis.org

1, 0, 2, 0, -3, 9, 0, 8, -48, 64, 0, -30, 275, -750, 625, 0, 144, -1800, 7560, -12960, 7776, 0, -840, 13426, -77175, 204085, -252105, 117649, 0, 5760, -112896, 831488, -3010560, 5734400, -5505024, 2097152, 0, -45360, 1058508, -9573228
Offset: 1

Views

Author

Jean-François Alcover, Dec 05 2014

Keywords

Comments

Second column (unsigned) 2, 3, 8, 30, 144, ... is A001048.
Diagonal 1, 2, 9, 64, 625, 7776, ... is A000169.

Examples

			Triangle begins :
  1;
  0,   2;
  0,  -3,     9;
  0,   8,   -48,   64;
  0, -30,   275, -750,    625;
  0, 144, -1800, 7560, -12960, 7776;
  ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998

Crossrefs

Cf. A000169, A001048, A156136, A000108 (B_2(x)), A001764 (B_3(x)), A002293 (B_4(x)), A002294 (B_5(x)), A002295 (B_6(x)), A002296 (B_7(x)), A007556 (B_8(x)), A062994 (B_9(x)), A059968 (B_10(x)), A230388 (B_11(x)), A139526, A260687.

Programs

  • Mathematica
    P[n_, t_] := Product[n*t - k, {k, 0, n-2}]; row[n_] := CoefficientList[P[n, t], t]; Table[row[n], {n, 1, 10}] // Flatten

Formula

P(n,t) = (n-1)!*binomial(n*t, n-1).
From Peter Bala, Nov 15 2015: (Start)
E.g.f. (with constant term 1): B_t(x) = Sum_{n >= 0} 1/(n*t + 1)*binomial(n*t + 1,n)*x^n = 1 + x + 2*t*x^2/2! + 3*t(3*t - 1)*x^3/3! + 4*t*(4*t - 1)*(4*t - 2)*x^4/4! + ... is the generalized binomial series of Lambert. See Graham et al., Section 5.4 and Section 7.5.
In the notation of the Bala link, B_t(x) = I^t(1 + x) where I^t is a fractional inversion operator. B_(1+t)(x) is the e.g.f. for A260687.
B_t(x) = 1 + x*B_t(x)^t.
For complex r, B_t(x)^r = Sum_{n >= 0} r/(n*t + r)*binomial(n*t + r,n)*x^n.
log (B_t(x)) = Sum_{n >= 1} 1/(n*t)*binomial(n*t,n)*x^n.
B_2(x) is the o.g.f. for the Catalan numbers A000108. B_t(x) for t = 3,4,5,... gives the o.g.f. for various Fuss-Catalan sequences. See the cross references. (End)

A070914 Array read by antidiagonals giving number of paths up and left from (0,0) to (n,kn) where x/y <= k for all intermediate points.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 14, 1, 1, 1, 5, 22, 55, 42, 1, 1, 1, 6, 35, 140, 273, 132, 1, 1, 1, 7, 51, 285, 969, 1428, 429, 1, 1, 1, 8, 70, 506, 2530, 7084, 7752, 1430, 1, 1, 1, 9, 92, 819, 5481, 23751, 53820, 43263, 4862, 1, 1, 1, 10, 117, 1240
Offset: 0

Views

Author

Henry Bottomley, May 20 2002

Keywords

Comments

Also related to dissections of polygons and enumeration of trees.
Number of dissections of a polygon into n (k+2)-gons by nonintersecting diagonals. All dissections are counted separately. See A295260 for nonequivalent solutions up to rotation and reflection. - Andrew Howroyd, Nov 20 2017
Number of rooted polyominoes composed of n (k+2)-gonal cells of the hyperbolic (Euclidean for k=0) regular tiling with Schläfli symbol {k+2,oo}. A rooted polyomino has one external edge identified, and chiral pairs are counted as two. For k>0, a stereographic projection of the {k+2,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 27 2024

Examples

			Rows start:
===========================================================
n\k| 0     1      2       3        4        5         6
---|-------------------------------------------------------
0  | 1,    1,     1,      1,       1,       1,        1 ...
1  | 1,    1,     1,      1,       1,       1,        1 ...
2  | 1,    2,     3,      4,       5,       6,        7 ...
3  | 1,    5,    12,     22,      35,      51,       70 ...
4  | 1,   14,    55,    140,     285,     506,      819 ...
5  | 1,   42,   273,    969,    2530,    5481,    10472 ...
6  | 1,  132,  1428,   7084,   23751,   62832,   141778 ...
7  | 1,  429,  7752,  53820,  231880,  749398,  1997688 ...
8  | 1, 1430, 43263, 420732, 2330445, 9203634, 28989675 ...
...
		

Crossrefs

Rows include A000012 (twice), A000027, A000326.
Reflected version of A062993 (which is the main entry).
Cf. A295260.
Polyominoes: A295224 (oriented), A295260 (unoriented).

Programs

  • Maple
    A:= (n, k)-> binomial((k+1)*n, n)/(k*n+1):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 25 2015
  • Mathematica
    T[n_, k_] = Binomial[n(k+1), n]/(k*n+1); Flatten[Table[T[n-k, k], {n, 0, 9}, {k, n, 0, -1}]] (* Jean-François Alcover, Apr 08 2016 *)
  • PARI
    T(n, k) = binomial(n*(k+1), n)/(n*k+1); \\ Andrew Howroyd, Nov 20 2017

Formula

T(n, k) = binomial(n*(k+1), n)/(n*k+1) = A071201(n, k*n) = A071201(n, k*n+1) = A071202(n, k*n+1) = A062993(n+k-1, k-1).
If P(k,x) = Sum_{n>=0} T(n,k)*x^n is the g.f. of column k (k>=0), then P(k,x) = exp(1/(k+1)*(Sum_{j>0} (1/j)*binomial((k+1)*j,j)*x^j)). - Werner Schulte, Oct 13 2015

A143546 G.f. A(x) satisfies A(x) = 1 + x*A(x)^3*A(-x)^2.

Original entry on oeis.org

1, 1, 1, 3, 5, 18, 35, 136, 285, 1155, 2530, 10530, 23751, 100688, 231880, 996336, 2330445, 10116873, 23950355, 104819165, 250543370, 1103722620, 2658968130, 11777187240, 28558343775, 127067830773, 309831575760, 1383914371728, 3390416787880, 15194457001440
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2008

Keywords

Comments

Number of achiral polyominoes composed of n hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}. A stereographic projection of the {6,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 23 2024
Number of achiral noncrossing partitions composed of n blocks of size 5. - Andrew Howroyd, Feb 08 2024

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 18*x^5 + 35*x^6 + 136*x^7 + ...
A(x) = 1 + x*A(x)^3*A(-x)^2 where
A(x)^3 = 1 + 3x + 6x^2 + 16x^3 + 39x^4 + 114x^5 + 304x^6 + 936x^7 + ...
A(-x)^2 = 1 - 2x + 3x^2 - 8x^3 + 17x^4 - 52x^5 + 125x^6 - 408x^7 + ...
Also, A(x) = G(x^2) + x*G(x^2)^3 where
G(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + 23751*x^6 + ...
G(x)^3 = 1 + 3*x + 18*x^2 + 136*x^3 + 1155*x^4 + 10530*x^5 + ...
		

Crossrefs

Column k=5 of A369929 and k=6 of A370062.
Cf. A118970.
Polyominoes: A221184(n-1) (oriented), A004127 (unoriented), A369473 (chiral), A002294 (rooted), A047749 {4,oo}, A369472 {5,oo}.

Programs

  • Mathematica
    terms = 28;
    A[] = 1; Do[A[x] = 1 + x A[x]^3 A[-x]^2 + O[x]^terms // Normal, {terms}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Jul 24 2018 *)
    p=6; Table[If[EvenQ[n],Binomial[(p-1)n/2,n/2]/((p-2)n/2+1),If[OddQ[p],(p-1)Binomial[(p-1)n/2-1,(n-1)/2]/((p-2)n+1),p Binomial[(p-1)n/2-1/2,(n-1)/2]/((p-2)n+2)]],{n,0,35}] (* Robert A. Russell, Jan 23 2024 *)
  • PARI
    {a(n)=my(A=1+O(x^(n+1)));for(i=0,n,A=1+x*A^3*subst(A^2,x,-x));polcoef(A,n)}
    
  • PARI
    {a(n)=my(m=n\2,p=2*(n%2)+1);binomial(5*m+p-1,m)*p/(4*m+p)}

Formula

G.f.: A(x) = G(x^2) + x*G(x^2)^3 where G(x) = 1 + x*G(x)^5 is the g.f. of A002294.
a(2n) = binomial(5*n,n)/(4*n+1); a(2n+1) = binomial(5*n+2,n)*3/(4*n+3).
From Robert A. Russell, Jan 23 2024: (Start)
a(n+2)/a(n) ~ 3125/256. a(2m+1)/a(2m) ~ 75/16; a(2m)/a(2m-1) ~ 125/48.
a(n) = 2*A004127(n) - A221184(n-1) = A221184(n-1) - 2*A369473(n) = A004127(n) - A369473(n). (End)
a(2m) = A002294(m) ~ (5^5/4^4)^m*sqrt(5/(2*Pi*(4*m)^3)). - Robert A. Russell, Jul 15 2024
From Seiichi Manyama, Jul 07 2025: (Start)
G.f. A(x) satisfies A(x)*A(-x) = (A(x) + A(-x))/2 = G(x^2), where G(x) = 1 + x*G(x)^5 is the g.f. of A002294.
a(0) = 1; a(n) = Sum_{i, j, k>=0 and i+2*j+2*k=n-1} a(i) * a(2*j) * a(2*k). (End)
a(0) = 1; a(n) = Sum_{i, j, k, l, m>=0 and i+j+k+l+m=n-1} (-1)^(i+j) * a(i) * a(j) * a(k) * a(l) * a(m). - Seiichi Manyama, Jul 08 2025

A213101 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^8)^4.

Original entry on oeis.org

1, 1, 4, 26, 188, 1627, 15172, 154904, 1670836, 18951217, 222682164, 2693625128, 33309537808, 419311915217, 5354144473084, 69169422070152, 902237854706616, 11863641066687085, 157052133090437332, 2090929291636792824, 27971914781646817864, 375725009230868446500
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2012

Keywords

Comments

Compare definition of g.f. to:
(1) B(x) = 1 + x/B(-x*B(x)) when B(x) = 1/(1-x).
(2) C(x) = 1 + x/C(-x*C(x)^3)^2 when C(x) = 1 + x*C(x)^2 (A000108).
(3) D(x) = 1 + x/D(-x*D(x)^5)^3 when D(x) = 1 + x*D(x)^3 (A001764).
(4) E(x) = 1 + x/E(-x*E(x)^7)^4 when E(x) = 1 + x*E(x)^4 (A002293).
(5) F(x) = 1 + x/F(-x*F(x)^9)^5 when F(x) = 1 + x*F(x)^5 (A002294).
The first negative term is a(249). - Georg Fischer, Feb 16 2019

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 188*x^4 + 1627*x^5 + 15172*x^6 +...
Related expansions:
A(x)^8 = 1 + 8*x + 60*x^2 + 488*x^3 + 4150*x^4 + 37600*x^5 + 358788*x^6 +...
A(-x*A(x)^8)^4 = 1 - 4*x - 10*x^2 - 44*x^3 - 439*x^4 - 3884*x^5 - 42724*x^6 -...
		

Crossrefs

Programs

  • Mathematica
    m = 22; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^8]^4 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^4,x,-x*subst(A^8,x,x+x*O(x^n))) );polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

A213102 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^9)^4.

Original entry on oeis.org

1, 1, 4, 30, 240, 2433, 26388, 315726, 3958452, 51863952, 698988716, 9637772716, 135161761860, 1920878419569, 27583547221596, 399310273694328, 5817100622299116, 85152975761167179, 1251046169511714720, 18428780031111768466, 271964652432415737596
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2012

Keywords

Comments

Compare definition of g.f. to:
(1) B(x) = 1 + x/B(-x*B(x)) when B(x) = 1/(1-x).
(2) C(x) = 1 + x/C(-x*C(x)^3)^2 when C(x) = 1 + x*C(x)^2 (A000108).
(3) D(x) = 1 + x/D(-x*D(x)^5)^3 when D(x) = 1 + x*D(x)^3 (A001764).
(4) E(x) = 1 + x/E(-x*E(x)^7)^4 when E(x) = 1 + x*E(x)^4 (A002293).
(5) F(x) = 1 + x/F(-x*F(x)^9)^5 when F(x) = 1 + x*F(x)^5 (A002294).
The first negative term is a(142). - Georg Fischer, Feb 16 2019

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 30*x^3 + 240*x^4 + 2433*x^5 + 26388*x^6 +...
Related expansions:
A(x)^9 = 1 + 9*x + 72*x^2 + 642*x^3 + 6030*x^4 + 61551*x^5 + 670344*x^6 +...
A(-x*A(x)^9)^4 = 1 - 4*x - 14*x^2 - 64*x^3 - 797*x^4 - 8188*x^5 - 104090*x^6 -...
		

Crossrefs

Programs

  • Mathematica
    m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^9]^4 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^4,x,-x*subst(A^9,x,x+x*O(x^n))) );polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

A213103 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^12)^4.

Original entry on oeis.org

1, 1, 4, 42, 420, 5779, 83104, 1306684, 21283504, 356648125, 6100611232, 105634585546, 1845124077000, 32368064972555, 568794055227200, 9991239094888864, 175142529040285920, 3060545399532144497, 53279047286232892928, 923884653765128839312, 15965368274611453269820
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2012

Keywords

Comments

Compare definition of g.f. to:
(1) B(x) = 1 + x/B(-x*B(x)) when B(x) = 1/(1-x).
(2) C(x) = 1 + x/C(-x*C(x)^3)^2 when C(x) = 1 + x*C(x)^2 (A000108).
(3) D(x) = 1 + x/D(-x*D(x)^5)^3 when D(x) = 1 + x*D(x)^3 (A001764).
(4) E(x) = 1 + x/E(-x*E(x)^7)^4 when E(x) = 1 + x*E(x)^4 (A002293).
(5) F(x) = 1 + x/F(-x*F(x)^9)^5 when F(x) = 1 + x*F(x)^5 (A002294).
The first negative term is a(76). - Georg Fischer, Feb 16 2019

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 42*x^3 + 420*x^4 + 5779*x^5 + 83104*x^6 +...
Related expansions:
A(x)^12 = 1 + 12*x + 114*x^2 + 1252*x^3 + 14775*x^4 + 193956*x^5 +...
A(-x*A(x)^12)^4 = 1 - 4*x - 26*x^2 - 148*x^3 - 2415*x^4 - 33192*x^5 -...
		

Crossrefs

Programs

  • Mathematica
    m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^12]^4 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^4,x,-x*subst(A^12,x,x+x*O(x^n))) );polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
Previous Showing 11-20 of 130 results. Next