A326214
Number of labeled n-vertex digraphs (with loops) containing a (directed) Hamiltonian path.
Original entry on oeis.org
0, 0, 12, 384, 53184
Offset: 0
The a(2) = 12 edge-sets:
{12}
{21}
{11,12}
{11,21}
{12,21}
{12,22}
{21,22}
{11,12,21}
{11,12,22}
{11,21,22}
{12,21,22}
{11,12,21,22}
Digraphs not containing a Hamiltonian path are
A326213.
Digraphs containing a Hamiltonian cycle are
A326204.
-
Table[Length[Select[Subsets[Tuples[Range[n],2]],FindHamiltonianPath[Graph[Range[n],DirectedEdge@@@#]]!={}&]],{n,4}] (* Mathematica 10.2+ *)
A326216
Number of labeled n-vertex digraphs (without loops) not containing a (directed) Hamiltonian path.
Original entry on oeis.org
1, 1, 1, 16, 772
Offset: 0
The a(3) = 16 edge-sets:
{} {12} {12,13}
{13} {12,21}
{21} {12,32}
{23} {13,23}
{31} {13,31}
{32} {21,23}
{21,31}
{23,32}
{31,32}
Unlabeled digraphs not containing a Hamiltonian path are
A326224.
The unlabeled undirected case is
A283420.
Digraphs (without loops) containing a Hamiltonian path are
A326217.
Digraphs (without loops) not containing a Hamiltonian cycle are
A326218.
-
Table[Length[Select[Subsets[Select[Tuples[Range[n],2],UnsameQ@@#&]],FindHamiltonianPath[Graph[Range[n],DirectedEdge@@@#]]=={}&]],{n,4}] (* Mathematica 10.2+ *)
A326222
Number of non-Hamiltonian unlabeled n-vertex digraphs (without loops).
Original entry on oeis.org
1, 0, 2, 12, 157, 5883, 696803, 255954536
Offset: 0
The undirected case (without loops) is
A246446.
Hamiltonian unlabeled digraphs are
A326225 (without loops) or
A003216 (with loops).
A326252
Number of digraphs with vertices {1..n} whose increasing edges are crossing.
Original entry on oeis.org
0, 0, 0, 0, 16384, 22020096, 62679678976, 556181084962816
Offset: 0
Simple graphs whose edges are crossing are
A326210.
Digraphs whose increasing edges are not crossing are
A326251.
Digraphs whose edges are not crossing are
A326237.
-
croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x
A227414
Number of ordered n-tuples of subsets of {1,2,...,n} which satisfy the conditions in Hall's Marriage Problem.
Original entry on oeis.org
1, 1, 7, 247, 37823, 23191071, 54812742655, 494828369491583
Offset: 0
a(2) = 7 because we have:
1: ({1}, {2});
2: ({1}, {1,2});
3: ({2}, {1});
4: ({2}, {1,2});
5: ({1,2}, {1});
6: ({1,2}, {2});
7: ({1,2}, {1,2}).
- F. Hivert, J. D. Mitchell, F. L. Smith, and W. A. Wilson, Minimal generating sets for matrix monoids, arXiv:2012.10323 [math.RA], 2020, p. 2.
- Alexander Postnikov, Permutohedra, associahedra, and beyond, 2005, arXiv:math/0507163 [math.CO], 2005.
- Stefan Schwarz, The semigroup of fully indecomposable relations and Hall relations, Czechoslovak Mathematical Journal, 23 (1973), 151-163.
- Wikipedia, Hall's marriage theorem
-
f[list_]:=Apply[And,Flatten[Table[Map[Length[#]>=n&,Map[Apply[Union,#]&, Subsets[list,{n}]]],{n,1,Length[list]}]]]; Table[Total[Boole[Map[f, Tuples[Subsets[n],n]]]],{n,1,4}]
A242876
Number of n X n nonograms (hanjie) which can be solved uniquely.
Original entry on oeis.org
1, 2, 14, 384, 52362, 25309575, 49745060669
Offset: 0
There are two 1 X 1 grids, filled and unfilled, and both can be distinguished, so a(1) = 2.
Of the 16 2 X 2 grids, only 10/01 and 01/10 cannot be distinguished (both have one block of length 1 for each row and column) and so a(2) = 14.
- N Ueda and T Nagao, NP-completeness results for NONOGRAM via parsimonious reductions, unpublished technical report (1996).
Cf.
A384764 (number of n X m nonograms which can be solved uniquely).
Cf.
A002416 (number of n X n nonograms).
Cf.
A000079 (number of 1 X n nonograms which can be solved uniquely; they are fully determined by the n column hints).
-
nono(v)=my(u=List(),t); for(i=1,#v,if(v[i],t++,if(t,listput(u,t);t=0))); if(t,listput(u,t)); Vec(u);
nonomat(M)=vector(matsize(M)[1],i,nono(M[i,]));
nono2(M)=[nonomat(M),nonomat(M~)];
num2mat(d,n)=matrix(d,d,i,j,bittest(n,(i-1)*d+j-1));
a(n)=my(v=vector(2^n^2,i,nono2(num2mat(n,i)))); v=vecsort(v,lex); sum(i=2,#v-1,v[i]!=v[i-1] && v[i]!=v[i+1])+(v[1]!=v[2])+(v[#v]!=v[#v-1]);
A308111
Isomorphism classes of Eulerian digraphs with n vertices, allowing loops.
Original entry on oeis.org
1, 2, 6, 24, 160, 2512, 129816, 22665792, 13056562208, 24953006054144, 160860329639968800, 3555065836569542246400, 273147301191314006316868352, 73832333258502021627712839197696, 70920540648597652305602460997787710080, 244186544390677638132290202415190606165938176, 3036252267734950687777830287721323374283100639476736
Offset: 0
For n=2 the a(2)=6 solutions are: two non-adjacent vertices with or without loops (3 cases), two vertices with or without loops connected by edges in each direction (3 cases).
For labeled digraphs rather than isomorphism classes see
A229865.
For isomorphism classes with loops forbidden see
A058338.
Cf.
A308128 (connected version of this).
A326251
Number of digraphs with vertices {1..n} whose increasing edges are not crossing.
Original entry on oeis.org
1, 2, 16, 512, 49152, 11534336, 6039797760, 6768868458496, 15885743998107648, 77083611222073409536, 767126299049285413502976, 15572324598183490228037091328, 642316330843573124053884695740416, 53681919993405760099480940765478125568
Offset: 0
Simple graphs whose edges are non-crossing are
A054726.
Digraphs whose edges are not crossing are
A326237.
Digraphs whose increasing edges are crossing are
A326252.
-
croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x
A344113
a(n) = 2^(n^2) - n^n.
Original entry on oeis.org
1, 12, 485, 65280, 33551307, 68719430080, 562949952597769, 18446744073692774400, 2417851639229257961991863, 1267650600228229401486703205376, 2658455991569831745807613835249018541, 22300745198530623141535718272639445405532160
Offset: 1
a(1) = 2^(1^2) - 1^1 = 1.
a(2) = 2^(2^2) - 2^2 = 12.
a(3) = 2^(3^2) - 3^3 = 485.
A064231
Triangle read by rows: T(n,k) = number of rational (+1,-1) matrices of rank k (n >= 1, 1 <= k <= n).
Original entry on oeis.org
2, 8, 8, 32, 288, 192, 128, 6272, 36864, 22272, 512, 115200, 3456000, 18432000, 11550720, 2048, 1968128, 243302400, 6471168000, 36373708800, 25629327360, 8192, 32514048, 14809546752, 1557061632000, 43378316083200, 281770208133120
Offset: 1
2; 8,8; 32,288,192; 128,6272,36864,22272; ...
- J. Kahn, J. Komlos and E. Szemeredi: On the probability that a random +-1 matrix is singular, J. AMS 8 (1995), 223-240.
- J. Komlos, On the determinants of random matrices, Studia Sci. Math. Hungar., 3 (1968), 387-399.
-
T=matrix(4,4); { for(n=1,4, mm=matrix(n,n); for(k=1,n, T[n,k]=0); forvec(x=vector(n*n,i,[0,1]), for(i=1,n, for(j=1,n,mm[i,j]=(-1)^x[i+n*(j-1)])); T[n,matrank(mm)]++); for(k=1,n,print1(T[n,k], if(k
Offset changed to 1 by
T. D. Noe, Mar 02 2011
Comments