cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 126 results. Next

A355440 Expansion of e.g.f. Sum_{k>=0} exp(4^k * x) * x^k/k!.

Original entry on oeis.org

1, 2, 10, 98, 2050, 84482, 7221250, 1218502658, 421846581250, 288641130823682, 403002184457781250, 1112950376623239069698, 6251793960501383945781250, 69503063309910921346390425602, 1568447691296998939150390025781250
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2022

Keywords

Comments

a(n) is the number of labeled digraphs on [n] with self loops allowed (A002416) such that reflexive nodes are only adjacent to irreflexive nodes and vice versa. A reflexive node is a node with a self loop. An irreflexive node is a node without a self loop. - Geoffrey Critzer, Aug 21 2023

Crossrefs

Column k=4 of A355395.
Cf. A193199.

Programs

  • Mathematica
    nn = 6; B[n_] := n! 4^Binomial[n, 2]; e[x_] := Sum[x^n/B[n], {n, 0, nn}];
    Table[B[n], {n, 0, nn}] CoefficientList[Series[e[x]^2, {x, 0, nn}], x]
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, exp(4^k*x)*x^k/k!)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-4^k*x)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n, 4^(k*(n-k))*binomial(n, k));

Formula

G.f.: Sum_{k>=0} x^k/(1 - 4^k * x)^(k+1).
a(n) = Sum_{k=0..n} 4^(k*(n-k)) * binomial(n,k).
E(x)^2 = Sum_{k>=0} a(n)*x^n/B(n) where B(n) = n!*4^binomial(n,2) and E(x) = Sum_{n>=0} x^n/B(n). - Geoffrey Critzer, Aug 21 2023

A361269 Triangular array read by rows. T(n,k) is the number of binary relations on [n] containing exactly k strongly connected components, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, 0, 4, 12, 0, 144, 168, 200, 0, 25696, 18768, 12384, 8688, 0, 18082560, 8697280, 3923040, 1914560, 936992, 0, 47025585664, 14670384000, 4512045120, 1622358720, 647087040, 242016192, 0, 450955726792704, 87781550054912, 17679638000640, 4496696041600, 1408276410240, 482302375296, 145763745920
Offset: 0

Views

Author

Geoffrey Critzer, Mar 06 2023

Keywords

Examples

			  1;
  0,     2;
  0,     4,    12;
  0,   144,   168,   200;
  0, 25696, 18768, 12384, 8688;
  ...
		

Crossrefs

Cf. A003030, A003024, A002416 (row sums).

Programs

  • Mathematica
    nn =15; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
       Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; begf = Total[CoefficientList[ Series[1/(Total[CoefficientList[Series[ Exp[-u *s[x]], {x, 0, nn}], x]* Table[z^n/(2^Binomial[n, 2]), {n, 0, nn}]]), {z, 0, nn}],z]*Table[z^n 2^Binomial[n, 2], {n, 0, nn}]] /. z -> 2 z;
    Range[0, nn]! CoefficientList[begf, {z, u}] // Grid (* Geoffrey Critzer, Mar 14 2023 after Andrew Howroyd *)
  • PARI
    Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
    G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
    U(e, p)={Z(p, k->e^(k*(k-1)/2))}
    RelEgf(n, e)={sum(k=0, n, e^(k^2)*x^k/k!, O(x*x^n) )}
    T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, RelEgf(n, e)))))))))]}
    { my(A=T(6)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 06 2023

Formula

E.g.f. for column 1: A(2*x) where A(x) is the e.g.f. for A003030.
E.g.f. for main diagonal: B(2*x) where B(x) is the e.g.f. for A003024.

Extensions

Terms a(15) and beyond from Andrew Howroyd, Mar 06 2023

A365590 Number of n X n Boolean relation matrices such that each of the diagonal blocks of its Frobenius normal form is either a 1 block or a 0 block.

Original entry on oeis.org

1, 2, 13, 243, 11998, 1477763, 436610299, 300960642300, 474171878424571, 1680899431189662775, 13241419272545722904788, 229482664065433754849099977, 8677282817864146616211588609715, 710901968198799834001047038898570250
Offset: 0

Views

Author

Geoffrey Critzer, Sep 10 2023

Keywords

Comments

A 1(0) block is such that every entry in the block is 1(0). See Gregory, Kirkland, Pullman for a description of Frobenius normal form.
a(n) is also the number of labeled digraphs (with loops allowed A002416) on [n] such that every strongly connected component is either complete or a single vertex without a loop.

Crossrefs

Programs

  • Mathematica
    nn = 13; B[n_] := n! 2^Binomial[n, 2]; ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /. Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}]; Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[-(Exp[x] - 1 + x)]], {x, 0, nn}], x]

Formula

Sum_{n>=0} a(n)*x^n/(n!*2^binomial(n,2)) = 1/(E(x) @ exp(-(exp(x)-1+x))) where E(x)=Sum_{n>=0} x^n/(n!*2^binomial(n,2)) and @ is the exponential Hadamard product (see Panafieu and Dovgal).

A374525 T(n,k) is the number of distinct n X n {0,1}-matrices that reach a fixed point after k alternately applied sorts by rows and columns, where T(n,k), k>=0 is an irregular triangle read by rows.

Original entry on oeis.org

2, 7, 7, 2, 45, 219, 243, 5, 650, 13599, 46385, 4512, 344, 46, 24520, 2542012, 23807149, 6258387, 781647, 132869, 7134, 714, 2625117, 1649029775, 39954292931, 22532640821, 3839779352, 685879134, 49418375, 5578311, 215664, 17256, 836488618
Offset: 1

Views

Author

Hugo Pfoertner at the suggestion of Markus Sigg, Jul 19 2024

Keywords

Comments

It is conjectured that for n>=3 the last term > 0 in row n is T(n,2*n-3). This is consistent with the result of random draws, where T(7,11) is the last term in row 7.
Approximate values of the terms in the next row 7 from random drawings are as follows: 8.4E8, 3.79E12, 2.38E14, 2.54E14, 5.61E13, 1.02E13, 8.22E11, 9.0E10, 4.2E9, 3E8, 9E6, 1E6.

Examples

			The triangle begins
   \ k    0        1         2        3       4       5     6    7
  n  -------------------------------------------------------------
  1 |     2,
  2 |     7,       7,        2,
  3 |    45,     219,      243,       5,
  4 |   650,   13599,    46385,    4512,    344,     46,
  5 | 24520, 2542012, 23807149, 6258387, 781647, 132869, 7134, 714
.
  T(2,0) = 7;
  matrices that are already stably sorted, i.e., neither affected
  by sorting by rows nor by sorting by columns:
  [0, 0; 0, 0], [0, 0; 0, 1], [0, 0; 1, 1], [0, 1; 0, 1],
  [0, 1; 1, 0], [0, 1; 1, 1], [1, 1; 1, 1]
.
  T(2,1) = 7; matrices that become stable after one sort:
               sorting by     stable
  [0, 0; 1, 0] columns ->  [0, 0; 0, 1]
  [0, 1; 0, 0] rows    ->  [0, 0; 0, 1]
  [1, 0; 0, 1] rows or ->  [0, 1; 1, 0]
               columns
  [1, 0; 1, 0] columns ->  [0, 1; 0, 1]
  [1, 0; 1, 1] columns ->  [0, 1; 1, 1]
  [1, 1; 0, 0] rows    ->  [0, 0; 1, 1]
  [1, 1; 0, 1] rows    ->  [0, 1; 1, 1]
.
  T(2,2) = 2; matrices needing two sorts to become stable:
         sorting            by     stable
  [1, 0]            [0, 1]         [0, 0]
  [0, 0]            [0, 0]         [0, 1]
         columns ->        rows ->
  [1, 1]            [1, 1]         [0, 1]
  [1, 0]            [0, 1]         [1, 1]
		

Crossrefs

Cf. A002416 (row sums), A089006 (column 0), A374526.

Programs

  • PARI
    \\ See link.

Formula

For each n: Sum_{k>=0} T(n,k) = 2^(n^2).
T(n,0) = A089006(n).

Extensions

a(24)-a(33) (row 6 of triangle) from Markus Sigg, Jul 25 2024

A060704 Singular n X n matrices over GF(2).

Original entry on oeis.org

1, 10, 344, 45376, 23555072, 48560766976, 399099960492032, 13098680304497852416, 1718239329196060706865152, 901210462928281273073900978176, 1890350559451566075272982533664407552
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 20 2001

Keywords

Comments

Also (apparently) number of n X n matrices over GF(2) having permanent = 0. - Hugo Pfoertner, Nov 14 2003

Crossrefs

Programs

  • Maple
    for n from 1 to 20 do printf(`%d,`,2^(n^2) - product(2^n - 2^j, j=0..n-1)) od:
  • PARI
    a(n)={2^(n^2) - prod(i=0, n-1, 2^n - 2^i)} \\ Harry J. Smith, Jul 09 2009

Formula

For n >= 1 a(n) = 2^(n^2) - A002884(n) = A002416(n) - A002884(n) = 2^(n^2) - Product_{i=0..n-1} (2^n - 2^i).

Extensions

More terms from James Sellers, Apr 23 2001

A099704 Consider the family of multigraphs enriched by the species of directed graphs. Sequence gives number of those multigraphs with n labeled edges.

Original entry on oeis.org

1, 2, 24, 776, 79840, 35397440, 69619053504, 564929183555840, 18464894708236907776, 2418517115222622481308160, 1267747370909677813160722947072, 2658511777246500251150215101758228480, 22300872810108738542496498718468714032205824
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A002416 as e.g.f.; EnrichedGnSeq defined in A098620.
    R(n)={sum(k=0, n, 2^(k^2)*x^k/k!) + O(x*x^n)}
    EnrichedGnSeq(R(15)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014500 and 1 + R(x) is the e.g.f. of A002416. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 12 2021

A099706 Consider the family of directed multigraphs enriched by the species of directed graphs. Sequence gives number of those multigraphs with n labeled loops and arcs.

Original entry on oeis.org

1, 4, 84, 3568, 305712, 87782720, 144600947392, 1139235294403328, 37012349010095737088, 4840037457225169875031040, 2535930555678883610642223895552, 5317274645187046706095607711946092544, 44602319906972740832371696997145322907873280
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2004

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Programs

  • PARI
    \\ R(n) is A002416 as e.g.f.; EnrichedGdlSeq defined in A098622.
    R(n)={sum(k=0, n, 2^(k^2)*x^k/k!) + O(x*x^n)}
    EnrichedGdlSeq(R(15)) \\ Andrew Howroyd, Jan 12 2021

Formula

E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A002416. - Andrew Howroyd, Jan 12 2021

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 12 2021

A126603 Number of real {0,1}-matrices of size n X n which are not robust (cf. A125587).

Original entry on oeis.org

1, 12, 444, 60528, 31951200, 66495244096
Offset: 1

Views

Author

Artur Jasinski, Jan 06 2007

Keywords

Comments

a(n) = 2^(n^2) - A125587(n) = A002416(n) - A125587(n). - Klaus Brockhaus, Jan 08 2007

Crossrefs

Extensions

a(5) and a(6) (from A125587) from Klaus Brockhaus, Jan 08 2007

A133460 3^n*2^(n^2).

Original entry on oeis.org

1, 6, 144, 13824, 5308416, 8153726976, 50096498540544, 1231171548132409344, 121029087867608368152576, 47590573814949492091483324416, 74853500292876717928978827574247424
Offset: 0

Views

Author

Philippe Deléham, Nov 28 2007

Keywords

Comments

Hankel transform of A089022.

Programs

  • Mathematica
    Table[3^n 2^n^2,{n,0,10}] (* Harvey P. Dale, Jul 28 2013 *)

Formula

a(n)=3^n*2^(n^2)=A000244(n)*A002416(n).

A186081 Number of binary relations R on {1,2,...,n} such that the transitive closure of R is the trivial relation.

Original entry on oeis.org

1, 1, 4, 144, 25696, 18082560, 47025585664, 450955726792704, 16260917603754029056, 2253010420928564535951360, 1219004114245442237742488879104, 2601909995433633381004133738019815424, 22040854392120341022554569447470527813779456
Offset: 0

Views

Author

Geoffrey Critzer, Feb 12 2011

Keywords

Comments

For n >= 2, a(n) is the number of strongly connected binary relations on [n]. - Geoffrey Critzer, Dec 04 2023

Examples

			a(2)=4 because there are four relations on {1,2} whose transitive closure is {(1,1), (1,2), (2,1), (2,2)}. They are the three nontransitive relations,{(1,2), (2,1)}, {(1,2), (2,1), (2,2)}, {(1,1), (1,2), (2,1)} and the trivial relation itself.
		

Crossrefs

Programs

  • Mathematica
    Needs["Combinatorica`"];
    f[list_] := Apply[Plus, Table[MatrixPower[list,n], {n,1,Length[list]}]];
    Join[{1}, Table[Length[Select[Map[Flatten, Map[f, Tuples[Strings[{0, 1}, n], n]]], FreeQ[#, 0] &]], {n, 1, 4}]]
    (* Second program: *)
    a[ n_] := If[ n < 1, Boole[n == 0], With[{triv = matnk[n, 2^n^2 - 1]}, Sum[ Boole[triv === transitiveClosure[ matnk[n, k]]], {k, 0, 2^n^2 - 1}]]]; matnk[n_, k_] := Partition[ IntegerDigits[ k, 2, n^2], n]; transitiveClosure[x_] := FixedPoint[ Sign@(# + Dot[#, x]) &, x, Length@x]; (* Michael Somos, Mar 08 2012 *)

Formula

From Geoffrey Critzer, Dec 04 2023: (Start)
For n >= 2, a(n) = A003030(n)*2^n = A361269(n,1).
E.g.f.: 1 + s(2*x) - x where s(x) is the e.g.f. for A003030. (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 31 2015
a(6) from Bert Dobbelaere, Feb 16 2019
a(7)-a(12) from Geoffrey Critzer, Dec 04 2023
Previous Showing 61-70 of 126 results. Next