cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 297 results. Next

A053646 Distance to nearest power of 2.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Offset: 1

Views

Author

Henry Bottomley, Mar 22 2000

Keywords

Comments

Sum_{j=1..2^(k+1)} a(j) = A002450(k) = (4^k - 1)/3. - Klaus Brockhaus, Mar 17 2003

Examples

			a(10)=2 since 8 is closest power of 2 to 10 and |8-10| = 2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (h-> min(n-h, 2*h-n))(2^ilog2(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 28 2021
  • Mathematica
    np2[n_]:=Module[{min=Floor[Log[2,n]],max},max=min+1;If[2^max-nHarvey P. Dale, Feb 21 2012 *)
  • PARI
    a(n)=vecmin(vector(n,i,abs(n-2^(i-1))))
    
  • PARI
    for(n=1,89,p=2^floor(0.1^25+log(n)/log(2)); print1(min(n-p,2*p-n),","))
    
  • PARI
    a(n) = my (p=#binary(n)); return (min(n-2^(p-1), 2^p-n)) \\ Rémy Sigrist, Mar 24 2018
    
  • Python
    def A053646(n): return min(n-(m := 2**(len(bin(n))-3)),2*m-n) # Chai Wah Wu, Mar 08 2022

Formula

a(2^k+i) = i for 1 <= i <= 2^(k-1); a(3*2^k+i) = 2^k-i for 1 <= i <= 2^k; (Sum_{k=1..n} a(k))/n^2 is bounded. - Benoit Cloitre, Aug 17 2002
a(n) = min(n-2^floor(log(n)/log(2)), 2*2^floor(log(n)/log(2))-n). - Klaus Brockhaus, Mar 08 2003
From Peter Bala, Aug 04 2022: (Start)
a(n) = a( 1 + floor((n-1)/2) ) + a( ceiling((n-1)/2) ).
a(2*n) = 2*a(n); a(2*n+1) = a(n) + a(n+1) for n >= 2. Cf. A006165. (End)
a(n) = 2*A006165(n) - n for n >= 2. - Peter Bala, Sep 25 2022

A018215 a(n) = n*4^n.

Original entry on oeis.org

0, 4, 32, 192, 1024, 5120, 24576, 114688, 524288, 2359296, 10485760, 46137344, 201326592, 872415232, 3758096384, 16106127360, 68719476736, 292057776128, 1236950581248, 5222680231936, 21990232555520, 92358976733184, 387028092977152, 1618481116086272
Offset: 0

Views

Author

N. J. A. Sloane, Peter Winkler (pw(AT)bell-labs.com)

Keywords

Comments

Bisection of A001787. That is, a(n) = A001787(2*n). - Graeme McRae, Jul 12 2006
All numbers of the form n*4^n+(4^n-1)/3 have the property that they are sums of two squares and also their indices are the sum of two squares. This follows from the identity n*4^n+(4^n-1)/3 = 4*(4*(..(4*(4*n+1)+1)..)+1)+1. - Artur Jasinski, Nov 12 2007

Crossrefs

Row n=4 of A258997.

Programs

Formula

G.f.: 4*x/(1-4*x)^2.
E.g.f.: 4*x*exp(4*x).
From Amiram Eldar, Jul 20 2020: (Start)
Sum_{n>=1} 1/a(n) = log(4/3) = A083679.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5/4). (End)

A036991 Numbers k with the property that in the binary expansion of k, reading from right to left, the number of 0's never exceeds the number of 1's.

Original entry on oeis.org

0, 1, 3, 5, 7, 11, 13, 15, 19, 21, 23, 27, 29, 31, 39, 43, 45, 47, 51, 53, 55, 59, 61, 63, 71, 75, 77, 79, 83, 85, 87, 91, 93, 95, 103, 107, 109, 111, 115, 117, 119, 123, 125, 127, 143, 151, 155, 157, 159, 167, 171, 173, 175, 179, 181, 183, 187, 189, 191, 199, 203
Offset: 1

Views

Author

Keywords

Comments

List of binary words that correspond to a valid pairing of parentheses. - Joerg Arndt, Nov 27 2004
This sequence includes as subsequences A000225, A002450, A007583, A036994, A052940, A112627, A113836, A113841, A290114; and also A015521 (without 0), A083713 (without 0), A086224 (without 6), A182512 (without 0). - Gennady Eremin, Nov 27 2021 and Aug 26 2023
Partial differences are powers of 2 (cf. A367626, A367627). - Gennady Eremin, Dec 23 2021
This is the sequence A030101(A014486(n)), n >= 0, sorted into ascending order. See A014486 for more references, illustrations, etc., concerning Dyck paths and other associated structures enumerated by the Catalan numbers. - Antti Karttunen, Sep 25 2023
The terms in this sequence with a given length in base 2 are counted by A001405. For example, the number of terms of bit length k=5 (these are 19, 21, 23, 27, 29, and 31) is equal to A001405(k-1) = A001405(4) = 6. - Gennady Eremin, Nov 07 2023

Examples

			From _Joerg Arndt_, Dec 05 2021: (Start)
List of binary words with parentheses for those in the sequence (indicated by P). The binary words are scanned starting from the least significant bit, while the parentheses words are written left to right:
     Binary   Parentheses (if the value is in the sequence)
00:  ..... P  [empty string]
01:  ....1 P   ()
02:  ...1.
03:  ...11 P   (())
04:  ..1..
05:  ..1.1 P   ()()
06:  ..11.
07:  ..111 P   ((()))
08:  .1...
09:  .1..1
10:  .1.1.
11:  .1.11 P   (()())
12:  .11..
13:  .11.1 P   ()(())
14:  .111.
15:  .1111 P   (((())))
16:  1....
17:  1...1
18:  1..1.
19:  1..11 P   (())()
(End)
		

Crossrefs

Cf. A350577 (primes subsequence).
See also A014486, A030101, A036988, A036990, A036992. A036994 is a subset (requires the count of zeros to be strictly less than the count of 1's).
See also A030308, A000225, A002450, A007583, A350346, A367625, A367626 & A367627 (first differences).

Programs

  • Haskell
    a036991 n = a036991_list !! (n-1)
    a036991_list = filter ((p 1) . a030308_row) [0..] where
       p     []    = True
       p ones (0:bs) = ones > 1 && p (ones - 1) bs
       p ones (1:bs) = p (ones + 1) bs
    -- Reinhard Zumkeller, Jul 31 2013
    
  • Maple
    q:= proc(n) local l, t, i; l:= Bits[Split](n); t:=0;
          for i to nops(l) do t:= t-1+2*l[i];
            if t<0 then return false fi
          od: true
        end:
    select(q, [$0..300])[];  # Alois P. Heinz, Oct 09 2019
  • Mathematica
    moreOnesRLQ[n_Integer] := Module[{digits, len, flag = True, iter = 1, ones = 0, zeros = 0}, digits = Reverse[IntegerDigits[n, 2]]; len = Length[digits]; While[flag && iter < len, If[digits[[iter]] == 1, ones++, zeros++]; flag = ones >= zeros; iter++]; flag]; Select[Range[0, 203], moreOnesRLQ] (* Alonso del Arte, Sep 21 2011 *)
    Join[{0},Select[Range[210],Min[Accumulate[Reverse[IntegerDigits[#,2]]/.{0->-1}]]>-1&]] (* Harvey P. Dale, Apr 18 2014 *)
  • PARI
    select( {is_A036991(n,c=1)=!n||!until(!n>>=1,(c-=(-1)^bittest(n,0))||return)}, [0..99]) \\ M. F. Hasler, Nov 26 2021
  • Python
    def ok(n):
        if n == 0: return True # by definition
        count = {"0": 0, "1": 0}
        for bit in bin(n)[:1:-1]:
            count[bit] += 1
            if count["0"] > count["1"]: return False
        return True
    print([k for k in range(204) if ok(k)]) # Michael S. Branicky, Nov 25 2021
    
  • Python
    from itertools import count, islice
    def A036991_gen(): # generator of terms
        yield 0
        for n in count(1):
            s = bin(n)[2:]
            c, l = 0, len(s)
            for i in range(l):
                c += int(s[l-i-1])
                if 2*c <= i:
                    break
            else:
                yield n
    A036991_list = list(islice(A036991_gen(),20)) # Chai Wah Wu, Dec 30 2021
    

Formula

If a(n) = A000225(k) for some k, then a(n+1) = a(n) + A060546(k). - Gennady Eremin, Nov 07 2023

Extensions

More terms from Erich Friedman
Edited by N. J. A. Sloane, Sep 14 2008 at the suggestion of R. J. Mathar
Offset corrected and example adjusted accordingly by Reinhard Zumkeller, Jul 31 2013

A062052 Numbers with exactly 2 odd integers in their Collatz (or 3x+1) trajectory.

Original entry on oeis.org

5, 10, 20, 21, 40, 42, 80, 84, 85, 160, 168, 170, 320, 336, 340, 341, 640, 672, 680, 682, 1280, 1344, 1360, 1364, 1365, 2560, 2688, 2720, 2728, 2730, 5120, 5376, 5440, 5456, 5460, 5461, 10240, 10752, 10880, 10912, 10920, 10922, 20480, 21504, 21760, 21824
Offset: 1

Views

Author

Keywords

Comments

The Collatz (or 3x+1) function is f(x) = x/2 if x is even, 3x+1 if x is odd.
The Collatz trajectory of n is obtained by applying f repeatedly to n until 1 is reached.
The sequence consists of terms of A002450 and their 2^k multiples. The first odd integer in the trajectory is one of the terms of A002450 and the second odd one is the terminal 1. - Antti Karttunen, Feb 21 2006
This sequence looks to appear first in the literature on page 1285 in R. E. Crandall.

Examples

			The Collatz trajectory of 5 is (5,16,8,4,2,1), which contains 2 odd integers.
		

Crossrefs

Is this a subset of A115774?
Column k=2 of A354236.

Programs

  • Haskell
    import Data.List (elemIndices)
    a062052 n = a062052_list !! (n-1)
    a062052_list = map (+ 1) $ elemIndices 2 a078719_list
    -- Reinhard Zumkeller, Oct 08 2011
    
  • Mathematica
    Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; countOdd[lst_] := Length[Select[lst, OddQ]]; Select[Range[22000], countOdd[Collatz[#]] == 2 &] (* T. D. Noe, Dec 03 2012 *)
  • PARI
    for(n=2,100000,s=n; t=0; while(s!=1,if(s%2==0,s=s/2,s=3*s+1; t++); if(s*t==1,print1(n,","); ); ))
    
  • Python
    def a(n):
        l=[n, ]
        while True:
            if n%2==0: n//=2
            else: n = 3*n + 1
            if n not in l:
                l.append(n)
                if n<2: break
            else: break
        return len([i for i in l if i % 2])
    print([n for n in range(1, 22001) if a(n)==2]) # Indranil Ghosh, Apr 14 2017

Formula

A078719(a(n)) = 2; A006667(a(n)) = 1.
a(n) = 2^x * (4^y - 1)/3 where x = A122196(n) - 1 and y = A122197(n) + 1. - Alan Michael Gómez Calderón, Jan 16 2025 after Antti Karttunen

A096773 a(n) = 4*a(n-2) + 1 with a(1) = 0, a(2) = 3.

Original entry on oeis.org

0, 3, 1, 13, 5, 53, 21, 213, 85, 853, 341, 3413, 1365, 13653, 5461, 54613, 21845, 218453, 87381, 873813, 349525, 3495253, 1398101, 13981013, 5592405, 55924053, 22369621, 223696213, 89478485, 894784853, 357913941, 3579139413, 1431655765
Offset: 1

Views

Author

Gottfried Helms, Aug 15 2004

Keywords

Comments

Remainders for classes m of integers n (mod 2^(m+1)). After applying one Collatz (3x+1)-transformation to the so-classified integers the result can be written in two classes (mod 6) only.
This classifying scheme covers all positive integers.
With one 3x+1-transformation T(x;p) := x' = (3x+1)/2^p, all numbers x, described in the form, with the free parameter i >= 0, x = i*2^N + a(N) result in x', describable by the two classes with the same parameter i:
x' = i*6 + 1 (for odd N>2), or x' = i*6 + 5 (for even N). Thus
x = 4*i + 3 -> x' = 6*i + 5, x = 8*i + 1 -> x' = 6*i + 1,
x = 16*i + 13 -> x' = 6*i + 5, x = 32*i + 5 -> x' = 6*i + 1,
x = 64*i + 53 -> x' = 6*i + 5, x = 128*i + 21 -> x' = 6*i + 1,
....
all with "i" as a free parameter >= 0 covering all positive integers.

Examples

			a(1) = (2^0-1)/3 =  0, a(2) = (5*2^1 - 1) / 3 =  3,
a(3) = (2^2-1)/3 =  1, a(4) = (5*2^3 - 1) / 3 = 13,
a(5) = (2^4-1)/3 =  5, a(6) = (5*2^5 - 1) / 3 = 53,
a(7) = (2^6-1)/3 = 21.
....
		

Crossrefs

Bisections are A002450 & A072197.
After the initial 0, column 1 of A257852.
Cf. A176965.

Programs

  • Magma
    [(2^(n-1)*(3 + 2*(-1)^n) - 1)/3: n in [1..40]]; // Vincenzo Librandi, Jul 12 2015
    
  • Mathematica
    a[1] = 0; a[2] = 3; a[n_] := a[n] = 4a[n - 2] + 1; Table[ a[n], {n, 35}] (* Robert G. Wilson v, Aug 20 2004 *)
    Table[(2^(n - 1)*(3 + 2*(-1)^(n)) - 1)/3, {n, 10}] (* L. Edson Jeffery, Jul 12 2015 *)
    nxt[{a_,b_}]:={b,4a+1}; NestList[nxt,{0,3},40][[;;,1]] (* or *) LinearRecurrence[{1,4,-4},{0,3,1},40] (* Harvey P. Dale, Mar 19 2025 *)
  • PARI
    apply( {A096773(n) = if(n%2, 1, 5)<<(n-1)\3}, [1..55]) \\ M. F. Hasler, May 28 2024
    
  • Perl
    # To map any (odd) v to its (r,c):
    use bigint; $v=149; $r=$c=0; while(1){ $b=($v&1); $v>>=1; if ($b==($v&1)){ $c=($v>>1); last} $r++} $r&=1; # this splits the binary representation into two parts, at the first repeated digit from the right: the number of bits on the right is the row value, and the binary value on the left is the column value. Example: 149 => 1.00.10101 => (r,c)=(5,1). Ruud H.G. van Tol, Sep 23 2021
    
  • Python
    A096773=lambda n:((1 if n&1 else 5)<M. F. Hasler, May 28 2024

Formula

a(2m) = (5*2^(2m-1) - 1)/3, a(2m-1) = (2^(2m-2)-1)/3.
From Paul Curtz, Jul 01 2008; corrected by Bob Selcoe, Jul 28 2018: (Start)
a(2n) = 10*a(2n-1) + 3.
a(n+1) - 2*a(n) = A001045(n+2), signed. (End)
a(n) = (2^(n-1)*(3 + 2*(-1)^n) - 1)/3. - L. Edson Jeffery, Jul 12 2015
a(2n) = A086893(2n), a(2n+1) = A086893(2n-1), n > 0. - Yosu Yurramendi, Jan 17 2017
G.f.: -x^2*(-3+2*x) / ( (x-1)*(2*x+1)*(2*x-1) ). - R. J. Mathar, Mar 07 2017
a(2n) = A072197(n-1), n > 0; a(2n+1) = A002450(n), n >= 0. - Yosu Yurramendi, Mar 07 2017
a(2n) = (A266753(n) + A004171(n-1))/2, a(2n+1) = (A266753(n) - A004171(n-1))/2, n > 0. - Yosu Yurramendi, Mar 07 2017
a(n) = least residue 2*3^(2^(n-4)-1) - 1 (mod 2^n), n >= 5. - Bob Selcoe, Jul 26 2018
a(n) = 2*A176965(n-1) + 1 for n > 1. - Loren M. Pearson, Dec 06 2024

A125118 Triangle read by rows: T(n,k) = value of the n-th repunit in base (k+1) representation, 1<=k<=n.

Original entry on oeis.org

1, 3, 4, 7, 13, 21, 15, 40, 85, 156, 31, 121, 341, 781, 1555, 63, 364, 1365, 3906, 9331, 19608, 127, 1093, 5461, 19531, 55987, 137257, 299593, 255, 3280, 21845, 97656, 335923, 960800, 2396745, 5380840, 511, 9841, 87381, 488281, 2015539, 6725601, 19173961, 48427561, 111111111
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 21 2006

Keywords

Examples

			First 4 rows:
1: [1]_2
2: [11]_2 ........ [11]_3
3: [111]_2 ....... [111]_3 ....... [111]_4
4: [1111]_2 ...... [1111]_3 ...... [1111]_4 ...... [1111]_5
_
1: 1
2: 2+1 ........... 3+1
3: (2+1)*2+1 ..... (3+1)*3+1 ..... (4+1)*4+1
4: ((2+1)*2+1)*2+1 ((3+1)*3+1)*3+1 ((4+1)*4+1)*4+1 ((5+1)*5+1)*5+1.
		

Crossrefs

This triangle shares some features with triangle A104878.
This triangle is a portion of rectangle A055129.
Each term of A110737 comes from the corresponding row of this triangle.
Diagonals (adjusting offset as necessary): A060072, A023037, A031973, A173468.
Cf. A023037, A031973, A125119, A125120 (row sums).

Programs

  • Magma
    [((k+1)^n -1)/k : k in [1..n], n in [1..12]]; // G. C. Greubel, Aug 15 2022
    
  • Mathematica
    Table[((k+1)^n -1)/k, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Aug 15 2022 *)
  • SageMath
    def A125118(n,k): return ((k+1)^n -1)/k
    flatten([[A125118(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Aug 15 2022

Formula

T(n, k) = Sum_{i=0..n-1} (k+1)^i.
T(n+1, k) = (k+1)*T(n, k) + 1.
Sum_{k=1..n} T(n, k) = A125120(n).
T(2*n-1, n) = A125119(n).
T(n, 1) = A000225(n).
T(n, 2) = A003462(n) for n>1.
T(n, 3) = A002450(n) for n>2.
T(n, 4) = A003463(n) for n>3.
T(n, 5) = A003464(n) for n>4.
T(n, 9) = A002275(n) for n>8.
T(n, n) = A060072(n+1).
T(n, n-1) = A023037(n) for n>1.
T(n, n-2) = A031973(n) for n>2.
T(n, k) = A055129(n, k+1) = A104878(n+k, k+1), 1<=k<=n. - Mathew Englander, Dec 19 2020

A295235 Numbers k such that the positions of the ones in the binary representation of k are in arithmetic progression.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 21, 24, 28, 30, 31, 32, 33, 34, 36, 40, 42, 48, 56, 60, 62, 63, 64, 65, 66, 68, 72, 73, 80, 84, 85, 96, 112, 120, 124, 126, 127, 128, 129, 130, 132, 136, 144, 146, 160, 168, 170, 192, 224, 240, 248
Offset: 1

Views

Author

Rémy Sigrist, Nov 18 2017

Keywords

Comments

Also numbers k of the form Sum_{b=0..h-1} 2^(i+j*b) for some h >= 0, i >= 0, j > 0 (in fact, h = A000120(k), and if k > 0, i = A007814(k)).
There is a simple bijection between the finite sets of nonnegative integers in arithmetic progression and the terms of this sequence: s -> Sum_{i in s} 2^i; the term 0 corresponds to the empty set.
For any n > 0, A054519(n) gives the numbers of terms with n+1 digits in binary representation.
For any n >= 0, n is in the sequence iff 2*n is in the sequence.
For any n > 0, A000695(a(n)) is in the sequence.
The first prime numbers in the sequence are: 2, 3, 5, 7, 17, 31, 73, 127, 257, 8191, 65537, 131071, 262657, 524287, ...
This sequence contains the following sequences: A000051, A000079, A000225, A000668, A002450, A019434, A023001, A048645.
For any k > 0, 2^k - 2, 2^k - 1, 2^k, 2^k + 1 and 2^k + 2 are in the sequence (e.g., 14, 15, 16, 17, and 18).
Every odd term is a binary palindrome (and thus belongs to A006995).
Odd terms are A064896. - Robert Israel, Nov 20 2017

Examples

			The binary representation of the number 42 is "101010" and has ones evenly spaced, hence 42 appears in the sequence.
The first terms, alongside their binary representations, are:
   n  a(n)  a(n) in binary
  --  ----  --------------
   1    0           0
   2    1           1
   3    2          10
   4    3          11
   5    4         100
   6    5         101
   7    6         110
   8    7         111
   9    8        1000
  10    9        1001
  11   10        1010
  12   12        1100
  13   14        1110
  14   15        1111
  15   16       10000
  16   17       10001
  17   18       10010
  18   20       10100
  19   21       10101
  20   24       11000
		

Crossrefs

Cf. A029931, A048793 (binary indices triangle), A070939, A291166, A325328 (prime indices rather than binary indices), A326669, A326675.

Programs

  • Maple
    f:= proc(d) local i,j,k;
      op(sort([seq(seq(add(2^(d-j*k),k=0..m),m=1..d/j),j=1..d),2^(d+1)]))
    end proc:
    0,1,seq(f(d),d=0..10); # Robert Israel, Nov 20 2017
  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],SameQ@@Differences[bpe[#]]&] (* Gus Wiseman, Jul 22 2019 *)
  • PARI
    is(n) = my(h=hammingweight(n)); if(h<3, return(1), my(i=valuation(n,2),w=#binary(n)); if((w-i-1)%(h-1)==0, my(j=(w-i-1)/(h-1)); return(sum(k=0,h-1,2^(i+j*k))==n), return(0)))

A016153 a(n) = (9^n-4^n)/5.

Original entry on oeis.org

0, 1, 13, 133, 1261, 11605, 105469, 953317, 8596237, 77431669, 697147165, 6275373061, 56482551853, 508359743893, 4575304803901, 41178011670565, 370603178776909, 3335432903959477, 30018913315504477, 270170288559017029
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the coefficient of x^(n-1) in the bivariate Fibonacci polynomials F(n)(x,y)=xF(n-1)(x,y)+yF(n-2)(x,y),F(0)(x,y)=0,F(1)(x,y)=1, when we write 13x for x and -36x^2 for y. - Mario Catalani (mario.catalani(AT)unito.it), Dec 09 2002

Crossrefs

Programs

  • Mathematica
    Join[{a=0,b=1},Table[c=13*b-36*a;a=b;b=c,{n,60}]](*and/or*)f[n_]:=(9^n-4^n)/5;f[Range[0,60]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
  • PARI
    a(n)=(9^n-4^n)/5

Formula

G.f.: x/((1-4*x)*(1-9*x)). a(n)=13*a(n-1)-36*a(n-2).
a(n) = A015441(2*n).
From Peter Bala, Jul 23 2025: (Start)
The following products telescope. Cf. A002450:
Product_{k >= 1} 1 + 6^k/a(k+1) = 3; Product_{k >= 1} 1 - 6^k/a(k+1) = 3/13.
Product_{k >= 1} 1 + (-6)^k/a(k+1) = 3/5; Product_{k >= 1} 1 - (-6)^k/a(k+1) = 15/13.
(End)

A162911 Numerators of drib tree fractions, where drib is the bit-reversal permutation tree of the Bird tree.

Original entry on oeis.org

1, 1, 2, 2, 3, 1, 3, 3, 5, 1, 4, 3, 4, 2, 5, 5, 8, 2, 7, 4, 5, 3, 7, 4, 7, 1, 5, 5, 7, 3, 8, 8, 13, 3, 11, 7, 9, 5, 12, 5, 9, 1, 6, 7, 10, 4, 11, 7, 11, 3, 10, 5, 6, 4, 9, 7, 12, 2, 9, 8, 11, 5, 13, 13, 21, 5, 18, 11, 14, 8, 19, 9, 16, 2, 11, 12, 17, 7, 19, 9, 14, 4, 13, 6, 7, 5, 11, 10, 17, 3, 13
Offset: 1

Views

Author

Ralf Hinze (ralf.hinze(AT)comlab.ox.ac.uk), Aug 05 2009

Keywords

Comments

The drib tree is an infinite binary tree labeled with rational numbers. It is generated by the following iterative process: start with the rational 1; for the left subtree increment and then reciprocalize the current rational; for the right subtree interchange the order of the two steps: the rational is first reciprocalized and then incremented. Like the Stern-Brocot and the Bird tree, the drib tree enumerates all the positive rationals (A162911(n)/A162912(n)).
From Yosu Yurramendi, Jul 11 2014: (Start)
If the terms (n>0) are written as an array (left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
1,
1, 2,
2, 3,1, 3,
3, 5,1, 4, 3, 4,2, 5,
5, 8,2, 7, 4, 5,3, 7,4, 7,1, 5, 5, 7,3, 8,
...
then the sum of the m-th row is 3^m (m = 0,1,2,), each column k is a Fibonacci-type sequence.
If the rows are written in a right-aligned fashion:
1
1, 2
2, 3,1, 3
3, 5,1, 4, 3, 4,2, 5
5, 8,2, 7,4, 5,3, 7, 4, 7,1, 5, 5, 7,3, 8
...
then each column k also is a Fibonacci-type sequence.
If the sequence is considered by blocks of length 2^m, m = 0,1,2,..., the blocks of this sequence are the reverses of blocks of A162912 (a(2^m+k) = A162912(2^(m+1)-1-k), m = 0,1,2,..., k = 0..2^m-1).
(End)
From Yosu Yurramendi, Jan 12 2017: (Start)
a(2^(m+2m' ) + A020988(m')) = A000045(m+1), m>=0, m'>=0
a(2^(m+2m'+1) + A020989(m')) = A000045(m+3), m>=0, m'>=0
a(2^(m+2m' ) - 1 - A002450(m')) = A000045(m+1), m>=0, m'>=0
a(2^(m+2m'+1) - 1 - A072197(m'-1)) = A000045(m+3), m>=0, m'>0
a(2^(m+1) -1) = A000045(m+2), m>=0. (End)

Examples

			The first four levels of the drib tree:
  [1/1],
  [1/2, 2/1],
  [2/3, 3/1, 1/3, 3/2],
  [3/5, 5/2, 1/4, 4/3, 3/4, 4/1, 2/5, 5/3].
		

Crossrefs

This sequence is the composition of A162909 and A059893: a(n) = A162909(A059893(n)). This sequence is a permutation of A002487(n+1).

Programs

  • Haskell
    import Ratio; drib :: [Rational]; drib = 1 : map (recip . succ) drib \/ map (succ . recip) drib; (a : as) \/ bs = a : (bs \/ as); a162911 = map numerator drib; a162912 = map denominator drib
    
  • PARI
    a(n) = my(x = 0, y = 1); forstep(i = logint(n, 2), 0, -1, [x, y] = if(bittest(n, i), [y, x + y], [x + y, x])); y \\ Mikhail Kurkov, Oct 12 2023
  • R
    blocklevel <- 6 # arbitrary
    a <- 1
    for(m in 0:blocklevel) for(k in 0:(2^m-1)){
      a[2^(m+1)+2*k  ] <- a[2^(m+1)-1-k]
      a[2^(m+1)+2*k+1] <- a[2^(m+1)-1-k] + a[2^m+k]
    }
    a
    # Yosu Yurramendi, Jul 11 2014
    

Formula

a(n) where a(1) = 1; a(2n) = b(n); a(2n+1) = a(n) + b(n); and b(1) = 1; b(2n) = a(n) + b(n); b(2n+1) = a(n).
a(2^(m+1)+2*k) = a(2^(m+1)-k-1), a(2^(m+1)+2*k+1) = a(2^(m+1)-k-1) + a(2^m+k), a(1) = 1, m>=0, k=0..2^m-1. - Yosu Yurramendi, Jul 11 2014
a(2^(m+1) + 2*k) = A162912(2^m + k), m >= 0, 0 <= k < 2^m.
a(2^(m+1) + 2*k + 1) = a(2^m + k) + A162912(2^m + k), m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Mar 30 2016
a(n*2^m + A176965(m)) = A268087(n), n > 0, m > 0. - Yosu Yurramendi, Feb 20 2017
a(n) = A002487(A258996(n)), n > 0. - Yosu Yurramendi, Jun 23 2021

A265747 Numbers written in Jacobsthal greedy base.

Original entry on oeis.org

0, 1, 2, 10, 11, 100, 101, 102, 110, 111, 200, 1000, 1001, 1002, 1010, 1011, 1100, 1101, 1102, 1110, 1111, 10000, 10001, 10002, 10010, 10011, 10100, 10101, 10102, 10110, 10111, 10200, 11000, 11001, 11002, 11010, 11011, 11100, 11101, 11102, 11110, 11111, 20000, 100000, 100001, 100002, 100010, 100011, 100100
Offset: 0

Views

Author

Antti Karttunen, Dec 17 2015

Keywords

Comments

These are called "Jacobsthal Representation Numbers" in Horadam's 1996 paper.
Sum_{i=0..} digit(i)*A001045(2+digit(i)) recovers n from such representation a(n), where digit(0) stands for the least significant digit (at the right), and A001045(k) gives the k-th Jacobsthal number.
No larger digits than 2 will occur, which allows representing the same sequence in a more compact form by base-3 coding in A265746.
Sequence A197911 gives the terms with no digit "2" in their representation, while its complement A003158 gives the terms where "2" occurs at least once.
Numbers beginning with digit "2" in this representation are given by A020988(n) [= 2*A002450(n) = 2*A001045(2n)].

Examples

			For n=7, when selecting the terms of A001045 with the greedy algorithm, we need terms A001045(4) + A001045(2) + A001045(2) = 5 + 1 + 1, thus a(7) = "102".
For n=10, we need A001045(4) + A001045(4) = 5+5, thus a(10) = "200".
		

Crossrefs

Cf. A265745 (sum of digits).
Cf. A265746 (same numbers interpreted in base-3, then shown in decimal).
Cf. A084639 (positions of repunits).
Cf. A007961, A014417, A014418, A244159 for analogous sequences.

Programs

  • Mathematica
    jacob[n_] := (2^n - (-1)^n)/3; maxInd[n_] := Floor[Log2[3*n + 1]]; A265747[n_] := A265747[n] = 10^(maxInd[n] - 2) + A265747[n - jacob[maxInd[n]]]; A265747[0] = 0; Array[A265747, 100, 0] (* Amiram Eldar, Jul 21 2023 *)
  • PARI
    A130249(n) = floor(log(3*n + 1) / log(2));
    A001045(n) = (2^n - (-1)^n) / 3;
    A265747(n) = {if(n==0, 0, my(d=n - A001045(A130249(n))); 10^(A130249(n)-2) + if(d == 0, 0, A265747(d)));} \\ Amiram Eldar, Jul 21 2023
  • Python
    def greedyJ(n): m = (3*n+1).bit_length() - 1; return (m, (2**m-(-1)**m)//3)
    def a(n):
        if n == 0: return 0
        place, value = greedyJ(n)
        return 10**(place-2) + a(n - value)
    print([a(n) for n in range(49)]) # Michael S. Branicky, Jul 11 2021
    

Formula

a(0) = 0; for n >= 1, a(n) = 10^(A130249(n)-2) + a(n-A001045(A130249(n))).
a(n) = A007089(A265746(n)).
Previous Showing 71-80 of 297 results. Next