cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 113 results. Next

A202535 a(n) = n*phi(n)*abs( mobius(n) ).

Original entry on oeis.org

1, 2, 6, 0, 20, 12, 42, 0, 0, 40, 110, 0, 156, 84, 120, 0, 272, 0, 342, 0, 252, 220, 506, 0, 0, 312, 0, 0, 812, 240, 930, 0, 660, 544, 840, 0, 1332, 684, 936, 0, 1640, 504, 1806, 0, 0, 1012, 2162, 0, 0, 0, 1632, 0, 2756, 0, 2200, 0, 2052, 1624, 3422
Offset: 1

Views

Author

R. J. Mathar, Dec 20 2011

Keywords

Comments

The inverse Mobius transform is b(n>=1) = 1, 3, 7, 3, 21, 21, 43, 3,7, 63, 11, 21,...., multiplicative with b(p^e) = A002061(p), e>=1 (see A119959). - R. J. Mathar
a(n) > 0 only when n is squarefree. - Alonso del Arte, Dec 20 2011

Examples

			a(5) = 20 because 5 * phi(5) * |mu(5)| = 5 * 4 * |(-1)| = 20.
		

Crossrefs

Cf. A079579.

Programs

  • Mathematica
    Table[n EulerPhi[n] Abs[MoebiusMu[n]], {n, 60}] (* Alonso del Arte, Dec 20 2011 *)
    f[p_, e_] := If[e == 1, (p-1)*p, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    a(n)=n*eulerphi(n)*abs(moebius(n)) \\ Charles R Greathouse IV, Dec 20 2011
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X + p^2*X))[n], ", ")) \\ Vaclav Kotesovec, Jun 24 2020

Formula

a(n) = A002618(n) *A008966(n).
Multiplicative with a(p^e) = (p-1)*p if e=1, a(p^e)=0 if e>1.
Dirichlet g.f.: Sum_(n>=1) a(n)/n^s = Product_{primes p} (1-p^(1-s)+p^(2-s)).
From Vaclav Kotesovec, Jun 24 2020: (Start)
Dirichlet g.f.: zeta(s-2)*Product_{primes p} (1 + p^(3-2*s) - p^(4-2*s) - p^(1-s)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = A065464/3 = 0.142749835... (End)

A263319 a(n) = pi(n^2)*phi(n)/2, where pi(x) denotes the number of primes not exceeding x, and phi(.) is Euler's totient function given by A000010.

Original entry on oeis.org

0, 1, 4, 6, 18, 11, 45, 36, 66, 50, 150, 68, 234, 132, 192, 216, 488, 198, 648, 312, 510, 460, 1089, 420, 1140, 732, 1161, 822, 2044, 616, 2430, 1376, 1810, 1528, 2400, 1260, 3942, 2052, 2880, 2008, 5260, 1644, 5943, 2950, 3672, 3509, 7567, 2736, 7497, 3670
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 14 2015

Keywords

Comments

Conjecture: (i) All the terms of this sequence are pairwise distinct.
(ii) All the numbers phi(n)*pi(n*(n-1)) (n = 1,2,3,...) are pairwise distinct.
(iii) All the numbers phi(n^2)*pi(n^2) = n*phi(n)*pi(n^2) (n = 1,2,3,...) are pairwise distinct.
We have checked this conjecture via Mathematica. For example, we have verified that a(n) (n = 1..4*10^5) are indeed pairwise distinct.
See also A263325 for a similar conjecture.

Examples

			a(1) = 0 since pi(1^2)*phi(1)/2 = 0*1/2 = 0.
a(2) = 1 since pi(2^2)*phi(2)/2 = 2*1/2 = 1.
a(3) = 4 since pi(3^2)*phi(3)/2 = 4*2/2 = 4.
		

Crossrefs

Programs

  • Magma
    [#PrimesUpTo(n^2)*EulerPhi(n)/2: n in [1..80]]; // Vincenzo Librandi, Oct 15 2015
  • Mathematica
    a[n_]:=a[n]=PrimePi[n^2]*EulerPhi[n]/2
    Do[Print[n," ",a[n]],{n,1,50}]
  • PARI
    a(n) = primepi(n^2)*eulerphi(n)/2; \\ Michel Marcus, Oct 15 2015
    

A335319 Decimal expansion of Sum_{n>=2} (-1)^n/(n*phi(n)), where phi(n) is the Euler totient function A000010.

Original entry on oeis.org

5, 5, 9, 2, 2, 8, 6, 8, 0, 7, 1, 2, 4, 2, 8, 0, 4, 2, 4, 2, 5, 4, 3, 4, 3, 3, 6, 7, 0, 3, 9, 8, 2, 0, 6, 7, 4, 8, 6, 5, 6, 5, 3, 6, 1, 2, 4, 2, 4, 2, 8, 2, 7, 3, 1, 6, 5, 9, 0, 0, 8, 9, 1, 0, 2, 5, 6, 6, 6, 2, 2, 6, 3, 7, 6, 2, 9, 4, 6, 0, 9, 0, 0, 4, 8, 5, 4
Offset: 0

Views

Author

Hugo Pfoertner, May 31 2020

Keywords

Comments

The formula section of A000010 provides the following conjecture: Sum_{i>=2} (-1)^i/(i*phi(i)) exists and is approximately 0.558. - Orges Leka (oleka(AT)students.uni-mainz.de), Dec 23 2004
A more accurate value of the conjectured limit is provided.

Examples

			0.5592286807124280424254343367039820674865653612424...
		

Crossrefs

Programs

  • PARI
    1 - prodeulerrat(1 + p/((p-1)^2*(p+1)))/5 \\ Amiram Eldar, Nov 11 2020

Formula

Equals 1 - (1/5) * A065484. - Amiram Eldar, Nov 11 2020

Extensions

More terms from Amiram Eldar, Nov 11 2020

A369779 a(n) = n * Sum_{p|n, p prime} phi(n/p) / p.

Original entry on oeis.org

0, 1, 1, 2, 1, 8, 1, 8, 6, 22, 1, 20, 1, 44, 26, 32, 1, 66, 1, 48, 48, 112, 1, 80, 20, 158, 54, 92, 1, 172, 1, 128, 116, 274, 62, 156, 1, 344, 162, 192, 1, 348, 1, 228, 174, 508, 1, 320, 42, 540, 278, 320, 1, 594, 130, 368, 348, 814, 1, 448, 1, 932, 306, 512, 176
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 31 2024

Keywords

Comments

Dirichlet convolution of A010051(n) and A002618(n). - Wesley Ivan Hurt, Jul 10 2025

Crossrefs

Programs

  • Mathematica
    Table[n*DivisorSum[n, EulerPhi[n/#]/# &, PrimeQ[#] &], {n, 100}]
  • PARI
    A369779(n) = if(1==n, 0, my(f=factor(n)); n*sum(i=1, #f~, (eulerphi(n/f[i, 1])/f[i,1]))); \\ Antti Karttunen, Jan 23 2025

Formula

From Wesley Ivan Hurt, Jul 10 2025: (Start)
a(n) = Sum_{d|n} A010051(d) * A002618(n/d).
a(p^k) = ceiling(p^(2k-2)-p^(2k-3)) for p prime and k>=1. (End)

A046078 Primes of the form n*phi(n)-1 where phi is the Euler function (in order of appearance).

Original entry on oeis.org

5, 7, 19, 11, 41, 31, 53, 109, 47, 83, 127, 271, 107, 251, 191, 499, 311, 811, 239, 929, 659, 839, 431, 683, 503, 2161, 971, 3659, 2267, 3119, 1319, 4421, 4969, 2663, 2999, 1871, 4373, 4871, 6551, 9311, 5939, 10099, 5039, 8423, 11423, 13309, 9839, 16001
Offset: 1

Views

Author

Keywords

Comments

These are listed in order of increasing n.

Crossrefs

Programs

  • Mathematica
    Select[Table[n EulerPhi[n]-1,{n,250}],PrimeQ[#]&] (* Harvey P. Dale, Aug 15 2011 *)

Extensions

Corrected and extended by Jud McCranie, Jan 03 2001
Name clarified by Michel Marcus, Jul 31 2018

A062955 a(n) = phi(n^2) - phi(n) = (n-1) * phi(n).

Original entry on oeis.org

0, 1, 4, 6, 16, 10, 36, 28, 48, 36, 100, 44, 144, 78, 112, 120, 256, 102, 324, 152, 240, 210, 484, 184, 480, 300, 468, 324, 784, 232, 900, 496, 640, 528, 816, 420, 1296, 666, 912, 624, 1600, 492, 1764, 860, 1056, 990, 2116, 752, 2016, 980, 1600, 1224, 2704
Offset: 1

Views

Author

Jason Earls, Jul 22 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[n^2]-EulerPhi[n],{n,60}] (* Harvey P. Dale, Aug 22 2012 *)
  • PARI
    a(n)=if(n<1,0,eulerphi(n^2)-eulerphi(n))
    
  • PARI
    { for (n=1, 1000, write("b062955.txt", n, " ", eulerphi(n^2) - eulerphi(n)) ) } \\ Harry J. Smith, Aug 14 2009

Formula

a(n) = A002618(n) - A000010(n). - Michel Marcus, Jun 28 2018

A074465 a(n) = gcd(n^2, sigma(n^2), phi(n^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 39, 1, 1, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 39, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 11, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Aug 23 2002

Keywords

Comments

a(n) is odd because sigma(n^2) is odd;.

Examples

			For n=14: gcd(196,399,84) = 7 = a(14).
		

Crossrefs

Programs

  • Mathematica
    Table[Apply[GCD, {w^2, DivisorSigma[1, w^2], EulerPhi[w^2]}], {w, 1, 128}]
  • PARI
    A074465(n) = gcd([n^2, sigma(n^2), eulerphi(n^2)]); \\ Antti Karttunen, Sep 07 2018

Formula

a(n) = A074389(n^2).

A082953 a(n) = A000252(n) / A070732(n).

Original entry on oeis.org

1, 2, 4, 8, 16, 8, 36, 32, 36, 32, 100, 32, 144, 72, 64, 128, 256, 72, 324, 128, 144, 200, 484, 128, 400, 288, 324, 288, 784, 128, 900, 512, 400, 512, 576, 288, 1296, 648, 576, 512, 1600, 288, 1764, 800, 576, 968, 2116
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), May 26 2003

Keywords

Comments

From Jianing Song, Apr 20 2019: (Start)
a(n) is the number of split complex numbers z = x + yj in a reduced system modulo n where x, y are integers, j^2 = 1; number of solutions to gcd(x^2 - y^2, n)=1 with x, y in [0, n-1].
a(n) is the number of invertible elements in the ring Z_n[x]/(x^2 - 1) with discriminant d = 4, where Z_n is the ring of integers modulo n. (End)

Crossrefs

Similar sequences: A127473 (size of (Z_n[x]/(x^2 - x))*, d = 1), A002618 ((Z_n[x]/(x^2))*, d = 0), A079458 ((Z_n[x]/(x^2 + 1))*, d = -4), A319445 ((Z_n[x]/(x^2 - x + 1))* or (Z_n[x]/(x^2 + x + 1))*, d = -3).

Programs

  • Maple
    A082953 := proc(n) numtheory[phi](n)*numtheory[phi](2*n) ; end proc:
    seq(A082953(n),n=1..100) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    Array[Times @@ Map[EulerPhi, {#, 2 #}] &, 47] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    a(n) = eulerphi(n)*eulerphi(2*n); \\ Michel Marcus, Jun 04 2025

Formula

a(n) = phi(n)*phi(2*n) = A000010(n)*A062570(n). - Vladeta Jovovic, May 02 2005
Multiplicative with a(2^e) = 2^(2e-1) and a(p^e) = (p-1)^2*p^(2e-2) for p > 2. - R. J. Mathar, Apr 14 2011
a(n) = phi(n)^2 if n odd; 2*phi(n)^2 if n even, where phi(n) = A000010(n). - Jianing Song, Apr 20 2019
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/5) * Product_{p prime} (1 - (2*p-1)/p^3) = (2/5) * A065464 = 0.171299... . - Amiram Eldar, Oct 30 2022
a(n) = gcd(n,2)*phi(n)^2 = A040001(n)*A127473(n). - Ridouane Oudra, Jun 04 2025

A124827 Order of Galois groups of irreducible Chebyshev polynomials of order n.

Original entry on oeis.org

1, 2, 6, 8, 20, 12, 42, 16, 54, 40, 110, 48, 156, 84, 120, 64, 272, 108, 342, 160, 252
Offset: 1

Views

Author

Artur Jasinski, Nov 09 2006

Keywords

Comments

All groups belonging to solvable Galois groups.
Very similar sequence is A002618 (disagreement occurred only for Chebyshev polynomials orders 8 and 16).
When the order of an irreducible Chebyshev polynomial is a prime number p, the Galois group is the Frobenius group of order p*(p-1) A036689.
In Magma classification the Galois groups are the following: T1_1, T2_1, T3_2, T4_3, T5_3, T6_3, T7_4, T8_8, T9_10, T11_4, T12_28, T13_6, T14_7, T15_11, T16_144, T17_5, T18_45, T19_6, T20_42, T21_15.
Is a(n) the order of Galois group of the polynomial x^n - 2? If so, then a(n) = n*phi(n) for n not divisible by 8, and n*phi(n)/2 otherwise (see the Math Overflow link below). Under this assumption, a(n) is multiplicative with a(p^e) = p^(2*e-1)*(p-1) for p being an odd prime; a(2) = 2, a(4) = 8, and a(2^e) = 2^(2*e-2) for e >= 3. - Jianing Song, Nov 22 2022

Examples

			a(5)=20 because the order of the Galois group of polynomial 16x^5-20x^3+5x-c is 20 (where c is an integer chosen so that the polynomial is irreducible). This transitive group is the Frobenius group F5 of order 20 (also called the metacyclic group M_5) T5_3(20) in Magma classification.
		

Crossrefs

Programs

  • Magma
    Zx:=PolynomialRing(Integers()); f:=16*x^5-20*x^3+5*x-7; G:=GaloisGroup(f:Old); "Order of group",#G; // Juergen Klueners klueners(AT)math.uni-duesseldorf.de

A137316 Array read by rows: T(n,k) is the number of automorphisms of the k-th group of order n, where the ordering is such that the rows are nondecreasing.

Original entry on oeis.org

1, 1, 2, 2, 6, 4, 2, 6, 6, 4, 8, 8, 24, 168, 6, 48, 4, 20, 10, 4, 12, 12, 12, 24, 12, 6, 42, 8, 8, 16, 16, 16, 32, 32, 32, 32, 48, 64, 96, 192, 192, 20160, 16, 6, 12, 48, 54, 432, 18, 8, 20, 24, 40, 40, 12, 42, 10, 110, 22, 8, 16, 16, 24, 24, 24, 24, 24, 24, 48, 48, 48, 48, 144, 336
Offset: 1

Views

Author

Benoit Jubin, Apr 06 2008, Apr 15 2008

Keywords

Comments

The length of the n-th row is A000001(n).
The largest value of the n-th row is A059773(n).
The number phi(n) = A000010(n) appears in the n-th row.

Examples

			The table begins as follows:
   1
   1
   2
   2   6
   4
   2   6
   6
   4   8   8  24 168
   6  48
   4  20
  10
   4  12  12  12  24
  12
   6  42
The first row with two numbers corresponds to the two groups of order 4, the cyclic group Z_4 and the Klein group Z_2 x Z_2, whose automorphism groups are respectively the group (Z_4)^* = Z_2 and the symmetric group S_3.
		

Crossrefs

Programs

  • GAP
    # GAP 4
    Print("\n") ;
    for o in [ 1 .. 33 ] do
        n := NumberSmallGroups(o) ;
        og := [] ;
        for i in [1 .. n] do
            g := SmallGroup(o,i) ;
            H := AutomorphismGroup(g) ;
            ho := Order(H) ;
            Add(og,ho) ;
        od;
        Sort(og) ;
        Print(og) ;
        Print("\n") ;
    od; # R. J. Mathar, Jul 13 2013
Previous Showing 31-40 of 113 results. Next