cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 184 results. Next

A003106 Number of partitions of n into parts 5k+2 or 5k+3.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 9, 11, 12, 15, 16, 20, 22, 26, 29, 35, 38, 45, 50, 58, 64, 75, 82, 95, 105, 120, 133, 152, 167, 190, 210, 237, 261, 295, 324, 364, 401, 448, 493, 551, 604, 673, 739, 820, 899, 997, 1091, 1207, 1321, 1457, 1593, 1756, 1916, 2108, 2301
Offset: 0

Views

Author

Keywords

Comments

Expansion of Rogers-Ramanujan function H(x) in powers of x.
Also number of partitions of n such that the number of parts is greater by one than the smallest part. - Vladeta Jovovic, Mar 04 2006
Example: a(10)=4 because we have [9, 1], [6, 2, 2], [5, 3, 2] and [4, 4, 2]. - Emeric Deutsch, Apr 09 2006
Also number of partitions of n such that if the largest part is k, then there are exactly k-1 parts equal to k. Example: a(10)=4 because we have [3, 3, 2, 2], [3, 3, 2, 1, 1], [3, 3, 1, 1, 1, 1] and [2, 1, 1, 1, 1, 1, 1, 1, 1]. - Emeric Deutsch, Apr 09 2006
Also number of partitions of n such that if the largest part is k, then k occurs at least k+1 times. Example: a(10)=4 because we have [2, 2, 2, 2, 2], [2, 2, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. - Emeric Deutsch, Apr 09 2006
Also number of partitions of n such that the smallest part is larger than the number of parts. Example: a(10)=4 because we have [10], [7, 3], [6, 4] and [5, 5]. - Emeric Deutsch, Apr 09 2006
Also number of partitions into distinct parts where parts differ by at least 2 and with minimal part >= 2, a(0)=1 because the condition is void for the empty list. - Joerg Arndt, Jan 04 2011
The g.f. is the special case D=2 of Sum_{n>=0} x^(D*n*(n+1)/2) / Product_{k=1..n} (1-x^k), the g.f. or partitions into distinct parts where the difference between successive parts is >= D and the minimal part >= D. - Joerg Arndt, Mar 31 2014
For more about the generalized Rogers-Ramanujan series G[i](x) see the Andrews-Baxter and Lepowsky-Zhu papers. The present series is G[2](x). - N. J. A. Sloane, Nov 22 2015
Convolution of A109699 and A109698. - Vaclav Kotesovec, Jan 21 2017

Examples

			G.f. = 1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + 4*x^11 + ...
G.f. = q^11 + q^131 + q^191 + q^251 + q^311 + 2*q^371 + 2*q^431 + 3*q^491 + 3*q^551 + ...
From _Joerg Arndt_, Dec 27 2012: (Start)
The a(18)=15: the partitions of 18 where all parts are 2 or 3 (mod 5) are
[ 1]  [ 2 2 2 2 2 2 2 2 2 ]
[ 2]  [ 3 3 2 2 2 2 2 2 ]
[ 3]  [ 3 3 3 3 2 2 2 ]
[ 4]  [ 3 3 3 3 3 3 ]
[ 5]  [ 7 3 2 2 2 2 ]
[ 6]  [ 7 3 3 3 2 ]
[ 7]  [ 7 7 2 2 ]
[ 8]  [ 8 2 2 2 2 2 ]
[ 9]  [ 8 3 3 2 2 ]
[10]  [ 8 7 3 ]
[11]  [ 8 8 2 ]
[12]  [ 12 2 2 2 ]
[13]  [ 12 3 3 ]
[14]  [ 13 3 2 ]
[15]  [ 18 ]
(End)
From _Wolfdieter Lang_, Oct 29 2016: (Start)
The a(18)=15 partitions of 18 without part 1 and parts differing by at least 2 are:
  [18]; [16,2], [15,3], [14,4], [13,5], [12,6], [11,7], [10,8]; [12,4,2], [11,5,2], [10,6,2], [9,7,2],[10,5,3], [9,6,3], [8,6,4]. The semicolon separates different number of parts. The maximal number of parts is A259361(18) = 3. (End)
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 238.
  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(f), p. 591.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 669.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 108.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Clarendon Press, Oxford, 2003, pp. 290-291.
  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003114.
For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595. G[0] = G[1]+G[2] is given by A003113.

Programs

  • Haskell
    a003106 = p a047221_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 30 2012
  • Maple
    g:=1/product((1-x^(5*j-2))*(1-x^(5*j-3)),j=1..15): gser:=series(g,x=0,66): seq(coeff(gser,x,n),n=0..63); # Emeric Deutsch, Apr 09 2006
  • Mathematica
    max = 63; g[x_] := 1/Product[(1-x^(5j-2))*(1-x^(5j-3)), {j, 1, Floor[max/4]}]; CoefficientList[ Series[g[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 17 2011, after Emeric Deutsch *)
    Table[Count[IntegerPartitions[n], p_ /; Min[p] > Length[p]], {n, 40}] (* Clark Kimberling, Feb 13 2014 *)
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^2, x^5] QPochhammer[ x^3, x^5]), {x, 0, n}]; (* Michael Somos, May 06 2015 *)
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{0, -1, -1, 0, 0}[[Mod[k, 5, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, May 17 2015 *)
    nmax = 63; kmax = nmax/5;
    s = Flatten[{Range[0, kmax]*5 + 2}~Join~{Range[0, kmax]*5 + 3}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Jul 31 2020 *)
  • PARI
    {a(n) = my(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, (sqrtint(4*n + 1) - 1) \ 2, t *= x^(2*k) / (1 - x^k) * (1 + x * O(x^(n - k^2 - k))), 1), n))}; /* Michael Somos, Oct 15 2008 */
    

Formula

The Rogers-Ramanujan identity is 1 + Sum_{n >= 1} t^(n*(n+1))/((1-t)*(1-t^2)*...*(1-t^n)) = Product_{n >= 1} 1/((1-t^(5*n-2))*(1-t^(5*n-3))); this is the g.f. for the sequence.
G.f.: (Product_{k>0} 1 + x^(2*k)) * (Sum_{k>=0} x^(k^2 + 2*k) / (Product_{i=1..k} 1 - x^(4*i))). - Michael Somos, Oct 19 2006
Euler transform of period 5 sequence [ 0, 1, 1, 0, 0, ...]. - Michael Somos, Oct 15 2008
From Joerg Arndt, Oct 10 2012: (Start)
Bill Gosper gives (message to the math-fun mailing list, Oct 07 2012)
prod(k>=0, [0 , a; q^k, 1]) = [0, X(a,q); 0, Y(a,q)] where
X(a,q) = a * sum(n>=0, a^n*q^(n^2) / prod(k=1..n, 1-q^n) ) and
Y(a,q) = sum(n>=0, a^n*q^(n^2-n) / prod(k=1..n, 1-q^n) ).
Set a=q to obtain prod(k>=0, [0 , a; q^k, 1]) = [0, q*H(q); 0, G(q)] where
H(q) is the g.f. of A003106 and G(q) is the g.f. of A003114.
Bill Gosper and N. J. A. Sloane give (message to math-fun, Oct 10 2012)
prod(k>=0, [0 , a*q^k; 1, 1]) = [U(a,q), U(a,q); V(a,q), V(a,q)] where
U(a,q) = a * sum(n>=0, a^n*q^(n^2+n) / prod(k=1..n, 1-q^k) ) and
V(a,q) = sum(n>=0, a^n*q^(n^2) / prod(k=1..n, 1-q^k) ).
Set a=1 to obtain prod(k>=0, [0 , q^k; 1, 1]) = [H(q), H(q); G(q), G(q)].
(End)
Expansion of f(-x^5) / f(-x^2, -x^3) in powers of x where f(, ) is the Ramanujan general theta function. - Michael Somos, May 06 2015
Expansion of f(-x, -x^4) / f(-x) in powers of x where f(, ) is the Ramanujan general theta function. - Michael Somos, Jun 13 2015
a(n) ~ sqrt((sqrt(5)-1)/5) * exp(2*Pi*sqrt(n/15)) / (2^(3/2) * 3^(1/4) * n^(3/4)) * (1 + (11*Pi/(60*sqrt(15)) - 3*sqrt(15)/(16*Pi)) / sqrt(n)). - Vaclav Kotesovec, Aug 24 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284152(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017

A006141 Number of integer partitions of n whose smallest part is equal to the number of parts.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 17, 19, 23, 25, 29, 33, 38, 42, 49, 54, 62, 69, 78, 87, 99, 109, 123, 137, 154, 170, 191, 211, 236, 261, 290, 320, 357, 392, 435, 479, 530, 582, 644, 706, 779, 854, 940, 1029, 1133, 1237, 1358, 1485
Offset: 1

Views

Author

Keywords

Comments

Or, number of partitions of n in which number of largest parts is equal to the largest part.
a(n) is the number of partitions of n-1 without parts that differ by less than 2 and which have no parts less than three. [MacMahon]
There are two conflicting choices for the offset in this sequence. For the definition given here the offset is 1, and that is what we shall adopt. On the other hand, if one arrives at this sequence via the Rogers-Ramanujan identities (see the next comment), the natural offset is 0.
Related to Rogers-Ramanujan identities: Let G[1](q) and G[2](q) be the generating functions for the two Rogers-Ramanujan identities of A003114 and A003106, starting with the constant term 1. The g.f. for the present sequence is G[3](q) = (G[1](q) - G[2](q))/q = 1+q^3+q^4+q^5+q^6+q^7+2*q^8+2*q^9+3*q^10+.... - Joerg Arndt, Oct 08 2012; N. J. A. Sloane, Nov 18 2015
For more about the generalized Rogers-Ramanujan series G[i](x) see the Andrews-Baxter and Lepowsky-Zhu papers. The present series is G[3](x). - N. J. A. Sloane, Nov 22 2015
From Wolfdieter Lang, Oct 31 2016: (Start)
From Hardy (H) p. 94, eq. (6.12.1) and Hardy-Wright (H-W), p. 293, eq. (19.14.3) for H_2(a,x) - H_1(a,x) = a*H_1(a*x,x) one finds from the result for H_1(a,x) (in (H) on top on p. 95), after putting a=x, the o.g.f. of a(n) = A003114(n) - A003106(n), n >= 0, with a(0) = 0 as Sum_{m>=0} x^((m+1)^2) / Product_{j=1..m} (1 - x^j). The m=0 term is 1*x^1. See the formula given by Joerg Arndt, Jan 29 2011.
This formula has a combinatorial interpretation (found similar to the one given in (H) section 6.0, pp. 91-92 or (H-W) pp. 290-291): a(n) is the number of partitions of n with parts differing by at least 2 and part 1 present. See the example for a(15) below. (End)
The Heinz numbers of these integer partitions are given by A324522. - Gus Wiseman, Mar 09 2019

Examples

			G.f. = x + x^4 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 3*x^11 + 3*x^12 + ...
a(15) = 5 because the partitions of 15 where the smallest part equals the number of parts are
3 + 6 + 6,
3 + 5 + 7,
3 + 4 + 8,
3 + 3 + 9, and
2 + 13.
- _Joerg Arndt_, Oct 08 2012
a(15) = 5 because the partitions of 15 with parts differing by at least 2 and part 1 present are: [14,1] obtained from the partition of 11 with one part, [11], added to the first part of the special partition [3,1] of 4 and  [11,3,1], [10,4,1], [9,5,1], [8,6,1] from adding all partition of 15 - 9 = 6 with one part, [6], and those with two parts, [5,1], [4,1], [3,3], to the special partition [5,3,1] of 9. - _Wolfdieter Lang_, Oct 31 2016
a(15) = 5 because the partitions of 14 with parts >= 3 and parts differing by at least 2 are [14], [11,3], [10,4], [9,5] and [8,6]. See the second [MacMahon] comment. This follows from the g.f. G[3](q) given in Andrews - Baxter, eq. (5.1) for i=3, (using summation index  m) and  m*(m+2) = 3 + 5 + ... + (2*m+1). - _Wolfdieter Lang_, Nov 02 2016
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(8) = 1 through a(15) = 5 integer partitions:
  (6,2)  (7,2)    (8,2)    (9,2)    (10,2)   (11,2)   (12,2)   (13,2)
         (3,3,3)  (4,3,3)  (4,4,3)  (5,4,3)  (5,5,3)  (6,5,3)  (6,6,3)
                           (5,3,3)  (6,3,3)  (6,4,3)  (7,4,3)  (7,5,3)
                                             (7,3,3)  (8,3,3)  (8,4,3)
                                                               (9,3,3)
(End)
		

References

  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 92-95.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, pp. 292-294.
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 45, Section 293.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595. G[0] = G[1]+G[2] is given by A003113.
A003106 counts partitions with minimum > length.
A003114 counts partitions with minimum >= length.
A026794 counts partitions by minimum.
A039899 counts partitions with minimum < length.
A039900 counts partitions with minimum <= length.
A239950 counts partitions with minimum equal to number of distinct parts.
Sequences related to balance:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 ranks balanced partitions.
- A340596 counts co-balanced factorizations.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.
- A340653 counts balanced factorizations.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n<0, 0, `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i,i)))))
        end:
    a:= n-> add(b(n-j^2, j-1), j=0..isqrt(n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Oct 08 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n<0, 0, If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]]; a[n_] := Sum[b[n-j^2, j-1], {j, 0, Sqrt[n]}]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Min[#]==Length[#]&]],{n,30}] (* Gus Wiseman, Mar 09 2019 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum(k=1, sqrtint(n), x^k^2 / prod(j=1, k-1, 1 - x^j, 1 + O(x ^ (n - k^2 + 1) ))), n))} /* Michael Somos, Jan 22 2008 */

Formula

G.f.: Sum_{m>=1} (x^(m^2)-x^(m*(m+1))) / Product_{i=1..m} (1-x^i) .
G.f.: Sum_{n>=1} x^(n^2)/Product_{k=1..n-1} (1-x^k). - Joerg Arndt, Jan 29 2011
a(n) = A003114(n) - A003106(n) = A039900(n) - A039899(n), (offset 1). - Vladeta Jovovic, Jul 17 2004
Plouffe in his 1992 dissertation conjectured that this has g.f. = (1+z+z^4+2*z^5-z^3-z^8+3*z^10-z^7+z^9)/(1+z-z^4-2*z^3-z^8+z^10), but Michael Somos pointed out on Jan 22 2008 that this is false.
Expansion of ( f(-x^2, -x^3) - f(-x, -x^4) ) / f(-x) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Jan 22 2007
a(n) ~ sqrt(1/sqrt(5) - 2/5) * exp(2*Pi*sqrt(n/15)) / (2*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Nov 01 2016

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 20 2000
Better description from Naohiro Nomoto, Feb 06 2002
Name shortened by Gus Wiseman, Apr 07 2021 (balanced partitions are A047993).

A007325 G.f.: Product_{k>0} (1-x^(5k-1))*(1-x^(5k-4))/((1-x^(5k-2))*(1-x^(5k-3))).

Original entry on oeis.org

1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 2, -3, 2, 0, -2, 4, -4, 3, -1, -3, 6, -7, 5, 0, -5, 9, -10, 7, -1, -7, 14, -16, 11, -1, -11, 20, -22, 16, -2, -15, 29, -33, 23, -2, -23, 41, -45, 32, -4, -30, 57, -64, 45, -4, -43, 78, -86, 60, -7, -57, 107, -119, 83, -8, -79, 143
Offset: 0

Views

Author

Keywords

Comments

Expansion of f(-x, -x^4) / f(-x^2, -x^3) in powers of x where f(,) is Ramanujan's two-variable theta function.
Hauptmodul series for Gamma(5).
Expansion of Rogers-Ramanujan's continued fraction 1 / (1 + x / ( 1 + x^2 / ( 1 + x^3 / ( 1 + x^4 / ... )))).
Given the g.f. A(x) the notation R(q) := q^(1/5) * A(q) is used by Berndt.

Examples

			G.f. = 1 - x + x^2 - x^4 + x^5 - x^6 + x^7 - x^9 + 2*x^10 - 3*x^11 + 2*x^12 - ...
G.f. = q - q^6 + q^11 - q^21 + q^26 - q^31 + q^36 - q^46 + 2*q^51 - 3*q^56 + ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's Lost Notebook, Part I, Springer, 2005, see p. 57.
  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 9.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 81.
  • A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 24.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    t1:=mul((1-x^(5*k-1))*(1-x^(5*k-4))/((1-x^(5*k-2))*(1-x^(5*k-3))), k=1..60); seriestolist(series(t1,x,59)); # N. J. A. Sloane, Jun 10 2013
    A007325_G:=proc(x,NK);Digits:=250;
    Q2:=1;
    for k from NK by -1 to 0 do
    Q1:=1+x^k/Q2; Q2:=Q1; od;
    Q3:=Q2; S:=Q3-1;
    end;
    # Sergei N. Gladkovskii, Dec 18 2011
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^5] QPochhammer[ q^4, q^5] / (QPochhammer[ q^2, q^5] QPochhammer[ q^3, q^5]), {q, 0, n}]; (* Michael Somos, Aug 17 2011 *)
    a[ n_] := SeriesCoefficient[ ContinuedFractionK[ q^k, 1, {k, 0, n}], {q, 0, n}]; (* Michael Somos, Jun 10 2013 *)
    max = 65; CoefficientList[ Series[ Fold[ #2/(1 + #1)&, q^n, q^Reverse[ Range[0, max-1] ] ], {q, 0, max}], q] (* Jean-François Alcover, Apr 04 2013 *)
  • PARI
    {a(n) = my(k); if( n<0, 0, k = (3 + sqrtint(9 + 40*n)) \ 10; polcoeff( sum( n=-k, k, (-1)^n * x^((5*n^2 + 3*n)/2), x * O(x^n)) / sum( n=-k, k,( -1)^n * x^((5*n^2 + n)/2), x * O(x^n)), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, if(k%5, (1 - x^k)^((-1)^binomial( k%5, 2)), 1), 1 + x * O(x^n)), n))};
    
  • PARI
    {a(n) = my(cf); if( n<0, 0, cf = contfracpnqn( matrix( 2, (sqrtint(8*n + 1) + 1)\2, i, j, if( i==1, x^(j-1), 1))); polcoeff( cf[2, 1] / cf[1, 1] + x * O(x^n), n))};
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, m=1; A = 1 + O(x); while( m<=n, m*=5; A = x * subst(A, x, x^5); A = (A * (1 - 2*A + 4*A^2 - 3*A^3 + A^4) / (1 + 3*A + 4*A^2 + 2*A^3 + A^4) / x)^(1/5)); polcoeff(A, n))};

Formula

Euler transform of period 5 sequence [-1, 1, 1, -1, 0, ...] (=-A080891).
G.f.: Product_{k>=1}(1-x^(5*k-1)) * (1-x^(5*k-4)) / ( (1-x^(5*k-2)) * (1-x^(5*k-3)) ) = H(x) / G(x) where H and G are respectively the g.f. of A003114 and A003106.
G.f.: (Sum (-1)^k x^((5*k + 3)*k/2))/(Sum (-1)^k x^((5*k + 1)*k/2)). - Michael Somos, Dec 13 2002
Given g.f. A(x), then B(q) = q * A(q^5) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 - v + u*v^3 + u^3*v^2. - Michael Somos, Mar 09 2004
Given g.f. A(x), then B(q) = q * A(q^5) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u * (u*v + w^2 + v^2*w) - w. - Michael Somos, Aug 29 2005
Given g.f. A(x), then B(q) = q * A(q^5) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u2 + u1*u3^2*u6 + u2*u3^2 - u2^2*u3*u6 - u3. - Michael Somos, Aug 29 2005
G.f.: 1 / (1 + x / ( 1 + x^2 / ( 1 + x^3 / ( 1 + x^4 / ... )))).
G.f.: 1 / (1 + 1 / (x^-1 + 1 / (x^-1 + 1 / (x^-2 + 1 / (x^-2 + 1 / ... ))))). - Michael Somos, Apr 30 2012
G.f.: A(x) = S(0) -1; S(k) = 1 + x^k/S(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 18 2011
Hankel transform is A167683. - Michael Somos, Apr 30 2012
a(n) = (-1)^n * A226556(n). - Michael Somos, Jun 11 2013
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A109091(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 01 2017

A047209 Numbers that are congruent to {1, 4} mod 5.

Original entry on oeis.org

1, 4, 6, 9, 11, 14, 16, 19, 21, 24, 26, 29, 31, 34, 36, 39, 41, 44, 46, 49, 51, 54, 56, 59, 61, 64, 66, 69, 71, 74, 76, 79, 81, 84, 86, 89, 91, 94, 96, 99, 101, 104, 106, 109, 111, 114, 116, 119, 121, 124, 126, 129, 131, 134, 136, 139, 141, 144, 146, 149, 151, 154
Offset: 1

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 72 ).
Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n + (h-4)*(-1)^n - h)/4)^2 - 1 == 0 (mod h); in our case, a(n)^2 - 1 == 0 (mod 5). - Bruno Berselli, Nov 17 2010
The sum of the alternating series (-1)^(n+1)/a(n) from n=1 to infinity is (Pi/5)*cot(Pi/5), that is (1/5)*sqrt(1 + 2/sqrt(5))*Pi. - Jean-François Alcover, May 03 2013
These numbers appear in the product of a Rogers-Ramanujan identity. See A003114 also for references. - Wolfdieter Lang, Oct 29 2016
Let m be a product of any number of terms of this sequence. Then m - 1 or m + 1 is divisible by 5. Closed under multiplication. - David A. Corneth, May 11 2018

Crossrefs

Cf. A005408 (n=1 or 3 mod 4), A007310 (n=1 or 5 mod 6).
Cf. A045468 (primes), A032527 (partial sums).

Programs

Formula

G.f.: (1+3x+x^2)/((1-x)(1-x^2)).
a(n) = floor((5n-2)/2). [corrected by Reinhard Zumkeller, Jul 19 2013]
a(1) = 1, a(n) = 5(n-1) - a(n-1). - Benoit Cloitre, Apr 12 2003
From Bruno Berselli, Nov 17 2010: (Start)
a(n) = (10*n + (-1)^n - 5)/4.
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3.
a(n) = a(n-2) + 5 for n > 2.
a(n) = 5*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i) for n > 1.
a(n)^2 = 5*A036666(n) + 1 (cf. also Comments). (End)
a(n) = 5*floor(n/2) + (-1)^(n+1). - Gary Detlefs, Dec 29 2011
E.g.f.: 1 + ((10*x - 5)*exp(x) + exp(-x))/4. - David Lovler, Aug 23 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = phi (A001622).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/5) * cosec(Pi/5) (A352324). (End)

Extensions

Edited by Michael Somos, Sep 22 2002

A064174 Number of partitions of n with nonnegative rank.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 17, 23, 31, 42, 56, 73, 96, 125, 161, 207, 265, 336, 426, 536, 672, 840, 1046, 1296, 1603, 1975, 2425, 2970, 3628, 4417, 5367, 6503, 7861, 9482, 11412, 13702, 16423, 19642, 23447, 27938, 33231, 39453, 46767, 55342, 65386, 77135
Offset: 1

Views

Author

Vladeta Jovovic, Sep 20 2001

Keywords

Comments

The rank of a partition is the largest summand minus the number of summands.
This sequence (up to proof) equals "partitions of 2n with even number of parts, ending in 1, with max descent of 1, where the number of odd parts in odd places equals the number of odd parts in even places. (See link and 2nd Mathematica line.) - Wouter Meeussen, Mar 29 2013
Number of partitions p of n such that max(max(p), number of parts of p) is a part of p. - Clark Kimberling, Feb 28 2014
From Gus Wiseman, Mar 09 2019: (Start)
Also the number of integer partitions of n with maximum part greater than or equal to the number of parts. The Heinz numbers of these integer partitions are given by A324521. For example, the a(1) = 1 through a(8) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8)
(21) (22) (32) (33) (43) (44)
(31) (41) (42) (52) (53)
(311) (51) (61) (62)
(321) (322) (71)
(411) (331) (332)
(421) (422)
(511) (431)
(4111) (521)
(611)
(4211)
(5111)
Also the number of integer partitions of n with maximum part less than or equal to the number of parts. The Heinz numbers of these integer partitions are given by A324562. For example, the a(1) = 1 through a(8) = 12 partitions are:
(1) (11) (21) (22) (221) (222) (322) (332)
(111) (211) (311) (321) (331) (2222)
(1111) (2111) (2211) (2221) (3221)
(11111) (3111) (3211) (3311)
(21111) (4111) (4211)
(111111) (22111) (22211)
(31111) (32111)
(211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
(End)

Examples

			a(20) = p(19) - p(15) + p(8) = 490 - 176 + 22 = 336.
		

Crossrefs

Programs

  • Maple
    f:= n -> add((-1)^(k+1)*combinat:-numbpart(n-(3*k^2-k)/2),k=1..floor((1+sqrt(24*n+1))/6)):
    map(f, [$1..100]); # Robert Israel, Aug 03 2015
  • Mathematica
    Table[Count[IntegerPartitions[n], q_ /; First[q] >= Length[q]], {n, 16}]
    (* also *)
    Table[Count[IntegerPartitions[2n],q_/;Last[q]===1 && Max[q-PadRight[Rest[q],Length[q]]]<=1 && Count[First/@Partition[q,2],?OddQ]==Count[Last/@Partition[q,2],?OddQ]],{n,16}]
    (* also *)
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Max[Max[p], Length[p]]]], {n, 50}] (* Clark Kimberling, Feb 28 2014 *)
  • PARI
    {a(n) = my(A=1); A = sum(m=0,n,x^m*prod(k=1,m,(1-x^(m+k-1))/(1-x^k +x*O(x^n)))); polcoeff(A,n)}
    for(n=1,60,print1(a(n),", ")) \\ Paul D. Hanna, Aug 03 2015
    
  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2))) \\ Seiichi Manyama, May 21 2023

Formula

a(n) = (A000041(n) + A047993(n))/2.
a(n) = p(n-1) - p(n-5) + p(n-12) - ... -(-1)^k*p(n-(3*k^2-k)/2) + ..., where p() is A000041(). - Vladeta Jovovic, Aug 04 2004
G.f.: Sum_{n>=1} x^n * Product_{k=1..n} (1 - x^(n+k-1))/(1 - x^k). - Paul D. Hanna, Aug 03 2015
A064173(n) + a(n) = A000041(n). - R. J. Mathar, Feb 22 2023
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2). - Seiichi Manyama, May 21 2023

Extensions

Mathematica programs modified by Clark Kimberling, Feb 12 2014

A087897 Number of partitions of n into odd parts greater than 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 10, 12, 13, 15, 18, 20, 23, 27, 30, 34, 40, 44, 50, 58, 64, 73, 83, 92, 104, 118, 131, 147, 166, 184, 206, 232, 256, 286, 320, 354, 394, 439, 485, 538, 598, 660, 730, 809, 891, 984, 1088, 1196, 1318, 1454, 1596, 1756
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2003

Keywords

Comments

Also number of partitions of n into distinct parts which are not powers of 2.
Also number of partitions of n into distinct parts such that the two largest parts differ by 1.
Also number of partitions of n such that the largest part occurs an odd number of times that is at least 3 and every other part occurs an even number of times. Example: a(10) = 2 because we have [2,2,2,1,1,1,1] and [2,2,2,2,2]. - Emeric Deutsch, Mar 30 2006
Also difference between number of partitions of 1+n into distinct parts and number of partitions of n into distinct parts. - Philippe LALLOUET, May 08 2007
In the Berndt reference replace {a -> -x, q -> x} in equation (3.1) to get f(x). G.f. is 1 - x * (1 - f(x)).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also number of symmetric unimodal compositions of n+3 where the maximal part appears three times. - Joerg Arndt, Jun 11 2013
Let c(n) = number of palindromic partitions of n whose greatest part has multiplicity 3; then c(n) = a(n-3) for n>=3. - Clark Kimberling, Mar 05 2014
From Gus Wiseman, Aug 22 2021: (Start)
Also the number of integer partitions of n - 1 whose parts cover an interval of positive integers starting with 2. These partitions are ranked by A339886. For example, the a(6) = 1 through a(16) = 5 partitions are:
32 222 322 332 432 3322 3332 4332 4432 5432 43332
2222 3222 22222 4322 33222 33322 33332 44322
32222 222222 43222 43322 333222
322222 332222 432222
2222222 3222222
(End)

Examples

			1 + x^3 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + 3*x^13 + ...
q + q^73 + q^121 + q^145 + q^169 + q^193 + 2*q^217 + 2*q^241 + 2*q^265 + ...
a(10)=2 because we have [7,3] and [5,5].
From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(22)=13 symmetric unimodal compositions of 22+3=25 where the maximal part appears three times:
01:  [ 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 1 2 3 3 3 2 1 1 1 1 1 1 ]
03:  [ 1 1 1 1 1 5 5 5 1 1 1 1 1 ]
04:  [ 1 1 1 1 2 2 3 3 3 2 2 1 1 1 1 ]
05:  [ 1 1 1 2 5 5 5 2 1 1 1 ]
06:  [ 1 1 2 2 2 3 3 3 2 2 2 1 1 ]
07:  [ 1 1 3 5 5 5 3 1 1 ]
08:  [ 1 1 7 7 7 1 1 ]
09:  [ 1 2 2 5 5 5 2 2 1 ]
10:  [ 1 4 5 5 5 4 1 ]
11:  [ 2 2 2 2 3 3 3 2 2 2 2 ]
12:  [ 2 3 5 5 5 3 2 ]
13:  [ 2 7 7 7 2 ]
(End)
From _Gus Wiseman_, Feb 16 2021: (Start)
The a(7) = 1 through a(19) = 8 partitions are the following (A..J = 10..19). The Heinz numbers of these partitions are given by A341449.
  7  53  9    55  B    75    D    77    F      97    H      99      J
         333  73  533  93    553  95    555    B5    755    B7      775
                       3333  733  B3    753    D3    773    D5      955
                                  5333  933    5533  953    F3      973
                                        33333  7333  B33    5553    B53
                                                     53333  7533    D33
                                                            9333    55333
                                                            333333  73333
(End)
		

References

  • J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), pp. 111-112. see Eq. I

Crossrefs

The ordered version is A000931.
Partitions with no ones are counted by A002865, ranked by A005408.
The even version is A035363, ranked by A066207.
The version for factorizations is A340101.
Partitions whose only even part is the smallest are counted by A341447.
The Heinz numbers of these partitions are given by A341449.
A000009 counts partitions into odd parts, ranked by A066208.
A025147 counts strict partitions with no 1's.
A025148 counts strict partitions with no 1's or 2's.
A026804 counts partitions whose smallest part is odd, ranked by A340932.
A027187 counts partitions with even length/maximum, ranks A028260/A244990.
A027193 counts partitions with odd length/maximum, ranks A026424/A244991.
A058695 counts partitions of odd numbers, ranked by A300063.
A058696 counts partitions of even numbers, ranked by A300061.
A340385 counts partitions with odd length and maximum, ranked by A340386.

Programs

  • Haskell
    a087897 = p [3,5..] where
       p [] _ = 0
       p _  0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 12 2011
    
  • Maple
    To get 128 terms: t4 := mul((1+x^(2^n)),n=0..7); t5 := mul((1+x^k),k=1..128): t6 := series(t5/t4,x,100); t7 := seriestolist(t6);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<3, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(n, n-1+irem(n, 2)):
    seq(a(n), n=0..80);  # Alois P. Heinz, Jun 11 2013
  • Mathematica
    max = 65; f[x_] := Product[ 1/(1 - x^(2k+1)), {k, 1, max}]; CoefficientList[ Series[f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 16 2011, after Emeric Deutsch *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<3, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]] ]; a[n_] := b[n, n-1+Mod[n, 2]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 01 2015, after Alois P. Heinz *)
    Flatten[{1, Table[PartitionsQ[n+1] - PartitionsQ[n], {n, 0, 80}]}] (* Vaclav Kotesovec, Dec 01 2015 *)
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&OddQ[Times@@#]&]],{n,0,30}] (* Gus Wiseman, Feb 16 2021 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - x) * eta(x^2 + A) / eta(x + A), n))} /* Michael Somos, Nov 13 2011 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A087897_T(n,k):
        if n==0: return 1
        if k<3 or n<0: return 0
        return A087897_T(n,k-2)+A087897_T(n-k,k)
    def A087897(n): return A087897_T(n,n-(n&1^1)) # Chai Wah Wu, Sep 23 2023, after Alois P. Heinz

Formula

Expansion of q^(-1/24) * (1 - q) * eta(q^2) / eta(q) in powers of q.
Expansion of (1 - x) / chi(-x) in powers of x where chi() is a Ramanujan theta function.
G.f.: 1 + x^3 + x^5*(1 + x) + x^7*(1 + x)*(1 + x^2) + x^9*(1 + x)*(1 + x^2)*(1 + x^3) + ... [Glaisher 1876]. - Michael Somos, Jun 20 2012
G.f.: Product_{k >= 1} 1/(1-x^(2*k+1)).
G.f.: Product_{k >= 1, k not a power of 2} (1+x^k).
G.f.: Sum_{k >= 1} x^(3*k)/Product_{j = 1..k} (1 - x^(2*j)). - Emeric Deutsch, Mar 30 2006
a(n) ~ exp(Pi*sqrt(n/3)) * Pi / (8 * 3^(3/4) * n^(5/4)) * (1 - (15*sqrt(3)/(8*Pi) + 11*Pi/(48*sqrt(3)))/sqrt(n) + (169*Pi^2/13824 + 385/384 + 315/(128*Pi^2))/n). - Vaclav Kotesovec, Aug 30 2015, extended Nov 04 2016
G.f.: 1/(1 - x^3) * Sum_{n >= 0} x^(5*n)/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 - x^3)*(1 - x^5)) * Sum_{n >= 0} x^(7*n)/Product_{k = 1..n} (1 - x^(2*k)) = ..., extending Deutsch's result dated Mar 30 2006. - Peter Bala, Jan 15 2021
G.f.: Sum_{n >= 0} x^(n*(2*n+1))/Product_{k = 2..2*n+1} (1 - x^k). (Set z = x^3 and q = x^2 in Mc Laughlin et al., Section 1.3, Entry 7.) - Peter Bala, Feb 02 2021
a(2*n+1) = Sum{j>=1} A008284(n+1-j,2*j - 1) and a(2*n) = Sum{j>=1} A008284(n-j, 2*j). - Gregory L. Simay, Sep 22 2023

A003105 Schur's 1926 partition theorem: number of partitions of n into parts 6n+1 or 6n-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 23, 26, 30, 34, 38, 42, 47, 53, 60, 67, 74, 82, 91, 102, 114, 126, 139, 153, 169, 187, 207, 228, 250, 274, 301, 331, 364, 399, 436, 476, 520, 569, 622, 679, 739, 804, 875, 953, 1038, 1128, 1224, 1327
Offset: 0

Views

Author

Keywords

Comments

There are many (at least 8) equivalent definitions of this sequence (besides the comments below, see also Schur, Alladi, Andrews). - N. J. A. Sloane, Jun 17 2011
Coefficients of replicable function number 72e. - N. J. A. Sloane, Jun 10 2015
Also number of partitions of n into odd parts in which no part appears more than twice, cf. A070048 and A096938. - Vladeta Jovovic, Jan 18 2005
Also number of partitions of n into distinct parts congruent to 1 or 2 modulo 3. (Follows from second g.f.) - N. Sato, Jul 20 2005
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution of A262928 and A261612. - Vaclav Kotesovec, Jan 13 2017
Convolution of A109702 and A109701. - Vaclav Kotesovec, Jan 21 2017

Examples

			G.f: A(x) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + ...
T72e = 1/q + q^11 + q^23 + q^35 + q^47 + 2*q^59 + 2*q^71 + 3*q^83 + ...
The logarithm of the g.f. begins:
log(A(x)) = x + x^2/2 + x^3/3 + x^4/4 + 6*x^5/5 + x^6/6 + 8*x^7/7 + x^8/8 + x^9/9 + 6*x^10/10 + 12*x^11/11 + x^12/12 + ... + A186099(n)*x^n/n + ... . - _Paul D. Hanna_, Feb 17 2013
		

References

  • K. Alladi, Refinements of Rogers-Ramanujan type identities. In Special Functions, q-Series and Related Topics (Toronto, ON, 1995), 1-35, Fields Inst. Commun., 14, Amer. Math. Soc., Providence, RI, 1997.
  • G. E. Andrews, Schur's theorem, partitions with odd parts and the Al-Salam-Carlitz polynomials. In q-Series From a Contemporary Perspective (South Hadley, MA, 1998), 45-56, Contemp. Math., 254, Amer. Math. Soc., Providence, RI, 2000.
  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • I. Schur, Zur Additiven Zahlentheorie, Ges. Abh., Vol. 2, Springer, pp. 43-50.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003105 n = p 1 n where
       p k m | m == 0 = 1 | m < k = 0 | otherwise = q k (m-k) + p (k+2) m
       q k m | m == 0 = 1 | m < k = 0 | otherwise = p (k+2) (m-k) + p (k+2) m
    -- Reinhard Zumkeller, Nov 12 2011
  • Maple
    with(combinat);
    A:=proc(n) local i, j, t3, t2, t1;
        t2:=0;
        t1:=firstpart(n);
        for j from 1 to numbpart(n)+2 do
            t3:=1;
            for i from 1 to nops(t1) do
                if (t1[i] mod 6) <> 1 and (t1[i] mod 6) <> 5 then t3:=0; fi;
            od;
            if t3=1 then t2:=t2+1; fi;
            if nops(t1) = 1 then RETURN(t2); fi;
            t1:=nextpart(t1);
        od;
    end;
    # brute-force Maple program from N. J. A. Sloane, Jun 17 2011
  • Mathematica
    max = 63; f[x_] := 1/Product[1 - x^k + x^(2k), {k, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 01 2011, after Vladeta Jovovic *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] / QPochhammer[ -x^3, x^3], {x, 0, n}]; (* Michael Somos, Jul 05 2014 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 3] != 0, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}];], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 13 2017 *)
    nmax = 63; kmax = nmax/6;
    s = Flatten[{Range[0, kmax]*6 + 1}~Join~{Range[kmax]*6 - 1}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Jul 31 2020 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)), n))}; /* Michael Somos, Jan 09 2005 */
    
  • PARI
    {S(n,x)=sumdiv(n,d,d*(1-x^d)^(n/d))}
    {a(n)=polcoeff(exp(sum(k=1,n,S(k,x)*x^k/k)+x*O(x^n)),n)}
    for(n=0,60,print1(a(n),", "))
    /* Paul D. Hanna, Feb 17 2013 */
    

Formula

G.f.: 1/Product_{k>=0} (1-x^(6*k+1))*(1-x^(6*k+5)) = Product_{k>=0} (1+x^(3*k+1))*(1+x^(3*k+2)) = 1/Product_{k>=0} (1-x^k+x^(2*k)). - Vladeta Jovovic, Jun 08 2003
Expansion of chi(-x^3) / chi(-x) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Mar 04 2012
Expansion of f(x, x^2) / f(-x^3) = f(-x^6) / f(-x, -x^5) in powers of x where f() is Ramanujan theta function. - Michael Somos, Jul 05 2014
Expansion of q^(1/12) * eta(q^2) * eta(q^3) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Jan 09 2005
Euler transform of period 6 sequence [1, 0, 0, 0, 1, 0, ...]. - Michael Somos, Jan 09 2005
Given g.f. A(x), then B(q) = (A(q^12) / q)^4 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u*v^4 + (1 - u^3) * v^3 + 6*u^2*v^2 + (u^4 - u)*v + u^3. - Michael Somos, Jan 09 2005
The logarithmic derivative equals A186099. - Paul D. Hanna, Feb 17 2013
G.f.: exp( Sum_{n>=1} A186099(n) * x^n/n ) where A186099(n) = sum of divisors of n congruent to 1 or 5 mod 6. - Paul D. Hanna, Feb 17 2013
G.f.: exp( Sum_{n>=1} S(n,x) * x^n/n ) where S(n,x) = Sum_{d|n} d*(1-x^d)^(n/d). - Paul D. Hanna, Feb 17 2013
a(n) ~ Pi*sqrt(2) / sqrt(3*(12*n-1)) * BesselI(1, Pi*sqrt(12*n-1) / (3*sqrt(6))) ~ exp(Pi*sqrt(2*n)/3) / (2^(5/4) * sqrt(3) * n^(3/4)) * (1 - (9/(8*Pi) + Pi/36)/sqrt(2*n) + (5 - 135/(4*Pi^2) + Pi^2/81)/(64*n)). - Vaclav Kotesovec, Aug 23 2015, extended Jan 09 2017
a(n) = (1/n)*Sum_{k=1..n} A186099(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017

Extensions

More terms from Vladeta Jovovic, Jun 08 2003

A342098 Number of (necessarily strict) integer partitions of n with all adjacent parts having quotients > 2.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 23, 25, 26, 28, 31, 33, 35, 38, 40, 42, 45, 48, 51, 55, 58, 61, 65, 68, 72, 77, 81, 85, 90, 94, 98, 104, 109, 114, 121, 127, 132, 139, 146
Offset: 1

Views

Author

Gus Wiseman, Mar 04 2021

Keywords

Comments

The decapitation of such a partition (delete the greatest part) is term-wise less than its negated first-differences.

Examples

			The a(1) = 1 through a(16) = 8 partitions (A..G = 10..16):
  1  2  3  4   5   6   7   8   9   A   B    C    D    E    F    G
           31  41  51  52  62  72  73  83   93   94   A4   B4   B5
                       61  71  81  82  92   A2   A3   B3   C3   C4
                                   91  A1   B1   B2   C2   D2   D3
                                       731  831  C1   D1   E1   E2
                                                 931  941  A41  F1
                                                      A31  B31  B41
                                                                C31
		

Crossrefs

The version allowing equality is A000929.
The case of equality (all adjacent parts having quotient 2) is A154402.
The multiplicative version is A342083.
The version with all quotients <= 2 is A342094 (strict: A342095).
The version with all quotients < 2 is A342096 (strict: A342097).
A000009 counts strict partitions.
A003114 counts partitions with adjacent parts differing by more than 1.
A034296 counts partitions with adjacent parts differing by at most 1.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Thread[Differences[-#]>Rest[#]]&]],{n,30}]

A114088 Triangle read by rows: T(n,k) is number of partitions of n whose tail below its Durfee square has k parts (n >= 1; 0 <= k <= n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 5, 5, 3, 2, 1, 1, 1, 5, 6, 6, 5, 3, 2, 1, 1, 1, 6, 8, 8, 7, 5, 3, 2, 1, 1, 1, 7, 10, 10, 9, 7, 5, 3, 2, 1, 1, 1, 9, 13, 13, 12, 10, 7, 5, 3, 2, 1, 1, 1, 10, 16, 17, 15, 13, 10, 7, 5, 3, 2, 1, 1, 1, 12, 20, 22, 20, 17
Offset: 1

Views

Author

Emeric Deutsch, Feb 12 2006

Keywords

Comments

From Gus Wiseman, May 21 2022: (Start)
Also the number of integer partitions of n with k parts below the diagonal. For example, the partition (3,2,2,1) has two parts (at positions 3 and 4) below the diagonal (1,2,3,4). Row n = 8 counts the following partitions:
8 71 611 5111 41111 311111 2111111 11111111
44 332 2222 22211 221111
53 422 3221 32111
62 431 3311
521 4211
Indices of parts below the diagonal are also called strong nonexcedances.
(End)

Examples

			T(7,2)=3 because we have [5,1,1], [3,2,1,1] and [2,2,2,1] (the bottom tails are [1,1], [1,1] and [2,1], respectively).
Triangle starts:
  1;
  1, 1;
  1, 1, 1;
  2, 1, 1, 1;
  2, 2, 1, 1, 1;
  3, 3, 2, 1, 1, 1;
  3, 4, 3, 2, 1, 1, 1;
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
  • G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).

Crossrefs

Row sums: A000041.
Column k = 0: A003114.
Weak opposite: A115994.
Permutations: A173018, weak A123125.
Ordered: A352521, rank stat A352514, weak A352522.
Opposite ordered: A352524, first col A008930, rank stat A352516.
Weak opposite ordered: A352525, first col A177510, rank stat A352517.
Weak: A353315.
Opposite: A353318.
A000700 counts self-conjugate partitions, ranked by A088902.
A115720 counts partitions by Durfee square, rank stat A257990.
A352490 gives the (strong) nonexcedance set of A122111, counted by A000701.

Programs

  • Maple
    g:=sum(z^(k^2)/product((1-z^j)*(1-t*z^j),j=1..k),k=1..20): gserz:=simplify(series(g,z=0,30)): for n from 1 to 14 do P[n]:=coeff(gserz,z^n) od: for n from 1 to 14 do seq(coeff(t*P[n],t^j),j=1..n) od; # yields sequence in triangular form
  • Mathematica
    subdiags[y_]:=Length[Select[Range[Length[y]],#>y[[#]]&]];
    Table[Length[Select[IntegerPartitions[n],subdiags[#]==k&]],{n,1,15},{k,0,n-1}] (* Gus Wiseman, May 21 2022 *)
  • PARI
    T_qt(max_row) = {my(N=max_row+1, q='q+O('q^N), h = sum(k=1,N, q^(k^2)/prod(j=1,k, (1-q^j)*(1-t*q^j))) ); for(i=1, N-1, print(Vecrev(polcoef(h, i))))}
    T_qt(10) \\ John Tyler Rascoe, Oct 24 2024

Formula

G.f. = Sum_{k>=1} q^(k^2) / Product_{j=1..k} (1 - q^j)*(1 - t*q^j).
Sum_{k=0..n-1} k*T(n,k) = A114089(n).

A342094 Number of integer partitions of n with no adjacent parts having quotient > 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 13, 16, 21, 27, 37, 44, 59, 75, 94, 117, 153, 186, 238, 296, 369, 458, 573, 701, 870, 1068, 1312, 1601, 1964, 2384, 2907, 3523, 4270, 5159, 6235, 7491, 9021, 10819, 12964, 15494, 18517, 22049, 26260, 31195, 37020, 43851, 51906, 61290
Offset: 1

Views

Author

Gus Wiseman, Mar 02 2021

Keywords

Comments

The decapitation of such a partition (delete the greatest part) is term-wise greater than or equal to its negated first-differences.

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (211)   (221)    (42)      (322)      (53)
                    (1111)  (2111)   (222)     (421)      (332)
                            (11111)  (321)     (2221)     (422)
                                     (2211)    (3211)     (2222)
                                     (21111)   (22111)    (3221)
                                     (111111)  (211111)   (4211)
                                               (1111111)  (22211)
                                                          (32111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The version with no adjacent parts having quotient < 2 is A000929.
The case of equality (all adjacent parts having quotient 2) is A154402.
A strong multiplicative version is A342083 or A342084.
The multiplicative version is A342085, with reciprocal version A337135.
The strict case is A342095.
The version with all adjacent parts having quotient < 2 is A342096, with strict case A342097.
The version with all adjacent parts having quotient > 2 is A342098.
The Heinz numbers of these partitions are listed by A342191.
A000009 counts strict partitions.
A003114 counts partitions with adjacent parts differing by more than 1.
A034296 counts partitions with adjacent parts differing by at most 1.
A038548 counts inferior (or superior) divisors, listed by A161906.
A161908 lists superior prime divisors.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Thread[Differences[-#]<=Rest[#]]&]],{n,30}]
Previous Showing 11-20 of 184 results. Next