cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 507 results. Next

A342095 Number of strict integer partitions of n with no adjacent parts having quotient > 2.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 3, 2, 4, 4, 6, 7, 6, 8, 10, 9, 13, 16, 17, 20, 25, 26, 29, 36, 40, 45, 55, 61, 69, 81, 90, 103, 119, 132, 154, 176, 196, 225, 254, 282, 323, 364, 403, 458, 519, 582, 655, 735, 822, 922, 1035, 1153, 1290, 1441, 1600, 1788, 1997, 2217, 2468
Offset: 1

Views

Author

Gus Wiseman, Mar 02 2021

Keywords

Comments

The decapitation of such a partition (delete the greatest part) is term-wise greater than or equal to its negated first-differences.

Examples

			The a(1) = 1 through a(15) = 10 partitions (A..F = 10..15):
  1  2  3   4  5   6    7    8   9    A     B     C     D     E     F
        21     32  42   43   53  54   64    65    75    76    86    87
                   321  421      63   532   74    84    85    95    96
                                 432  4321  542   543   643   653   A5
                                            632   642   742   743   654
                                            5321  5421  6421  842   753
                                                  6321        5432  843
                                                              7421  6432
                                                                    8421
                                                                    54321
		

Crossrefs

The reciprocal version (no adjacent parts having quotient < 2) is A000929.
The case of equality (all adjacent parts having quotient 2) is A154402.
The multiplicative version is A342085 or A337135.
The non-strict version is A342094.
The non-strict version without quotients of 2 exactly is A342096.
The version without quotients of 2 exactly is A342097.
A000009 counts strict partitions.
A003114 counts partitions with adjacent parts differing by more than 1.
A034296 counts partitions with adjacent parts differing by at most 1.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Thread[Differences[-#]<=Rest[#]]&]],{n,30}]

A344605 Number of alternating patterns of length n, including pairs (x,x).

Original entry on oeis.org

1, 1, 3, 6, 22, 102, 562, 3618, 26586, 219798, 2018686, 20393790, 224750298, 2683250082, 34498833434, 475237879950, 6983085189454, 109021986683046, 1802213242949602, 31447143854808378, 577609702827987882, 11139837273501641502, 225075546284489412854
Offset: 0

Views

Author

Gus Wiseman, May 27 2021

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670. A sequence is alternating (cf. A025047) including pairs (x,x) if there are no adjacent triples (..., x, y, z, ...) where x <= y <= z or x >= y >= z. These sequences avoid the weak consecutive patterns (1,2,3) and (3,2,1).
An alternating pattern of length > 2 is necessarily an anti-run (A005649).
The version without pairs (x,x) is identical to this sequence except a(2) = 2 instead of 3.

Examples

			The a(0) = 1 through a(4) = 22 patterns:
  ()  (1)  (1,1)  (1,2,1)  (1,2,1,2)
           (1,2)  (1,3,2)  (1,2,1,3)
           (2,1)  (2,1,2)  (1,3,1,2)
                  (2,1,3)  (1,3,2,3)
                  (2,3,1)  (1,3,2,4)
                  (3,1,2)  (1,4,2,3)
                           (2,1,2,1)
                           (2,1,3,1)
                           (2,1,3,2)
                           (2,1,4,3)
                           (2,3,1,2)
                           (2,3,1,3)
                           (2,3,1,4)
                           (2,4,1,3)
                           (3,1,2,1)
                           (3,1,3,2)
                           (3,1,4,2)
                           (3,2,3,1)
                           (3,2,4,1)
                           (3,4,1,2)
                           (4,1,3,2)
                           (4,2,3,1)
		

Crossrefs

The version for permutations is A001250.
The version for compositions is A344604.
The version for permutations of prime indices is A344606.
A000670 counts patterns (ranked by A333217).
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A019536 counts necklace patterns.
A025047 counts alternating or wiggly compositions, complement A345192.
A226316 counts patterns avoiding (1,2,3) (weakly: A052709).
A335515 counts patterns matching (1,2,3).

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]],{n,0,6}]

Extensions

a(10) and beyond from Martin Ehrenstein, Jun 10 2021

A374515 Irregular triangle read by rows where row n lists the leaders of anti-runs in the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 3, 3, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 4, 4, 1, 3, 3, 3, 3, 3, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2024

Keywords

Comments

Anti-runs summing to n are counted by A003242(n).
The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal anti-runs of the 1234567th composition in standard order are ((3,2,1,2),(2,1,2,5,1),(1),(1)), so row 1234567 is (3,2,1,1).
The nonnegative integers, corresponding compositions, and leaders of anti-runs begin:
    0:      () -> ()        15: (1,1,1,1) -> (1,1,1,1)
    1:     (1) -> (1)       16:       (5) -> (5)
    2:     (2) -> (2)       17:     (4,1) -> (4)
    3:   (1,1) -> (1,1)     18:     (3,2) -> (3)
    4:     (3) -> (3)       19:   (3,1,1) -> (3,1)
    5:   (2,1) -> (2)       20:     (2,3) -> (2)
    6:   (1,2) -> (1)       21:   (2,2,1) -> (2,2)
    7: (1,1,1) -> (1,1,1)   22:   (2,1,2) -> (2)
    8:     (4) -> (4)       23: (2,1,1,1) -> (2,1,1)
    9:   (3,1) -> (3)       24:     (1,4) -> (1)
   10:   (2,2) -> (2,2)     25:   (1,3,1) -> (1)
   11: (2,1,1) -> (2,1)     26:   (1,2,2) -> (1,2)
   12:   (1,3) -> (1)       27: (1,2,1,1) -> (1,1)
   13: (1,2,1) -> (1)       28:   (1,1,3) -> (1,1)
   14: (1,1,2) -> (1,1)     29: (1,1,2,1) -> (1,1)
		

Crossrefs

Row-leaders of nonempty rows are A065120.
Row-lengths are A333381.
Row-sums are A374516.
Positions of identical rows are A374519 (counted by A374517).
Positions of distinct (strict) rows are A374638 (counted by A374518).
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression is A373948 or A374251, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[First/@Split[stc[n],UnsameQ],{n,0,100}]

A069916 Number of log-concave compositions (ordered partitions) of n.

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 14, 20, 26, 36, 47, 60, 80, 102, 127, 159, 194, 236, 291, 355, 425, 514, 611, 718, 856, 1009, 1182, 1381, 1605, 1861, 2156, 2496, 2873, 3299, 3778, 4301, 4902, 5574, 6325, 7176, 8116, 9152, 10317, 11610, 13028, 14611, 16354, 18259, 20365
Offset: 0

Views

Author

Pontus von Brömssen, Apr 24 2002

Keywords

Comments

These are compositions with weakly decreasing first quotients, where the first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3). - Gus Wiseman, Mar 16 2021

Examples

			Out of the 8 compositions of 4, only 2+1+1 and 1+1+2 are not log-concave, so a(4)=6.
From _Gus Wiseman_, Mar 15 2021: (Start)
The a(1) = 1 through a(6) = 14 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)
       (11)  (12)   (13)    (14)     (15)
             (21)   (22)    (23)     (24)
             (111)  (31)    (32)     (33)
                    (121)   (41)     (42)
                    (1111)  (122)    (51)
                            (131)    (123)
                            (221)    (132)
                            (11111)  (141)
                                     (222)
                                     (231)
                                     (321)
                                     (1221)
                                     (111111)
(End)
		

Crossrefs

The version for differences instead of quotients is A070211.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A001055 counts factorizations.
A002843 counts compositions with adjacent parts x <= 2y.
A003238 counts chains of divisors summing to n-1, with strict case A122651.
A003242 counts anti-run compositions.
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors summing to n.

Programs

  • Mathematica
    (* This program is not suitable for computing a large number of terms *)
    compos[n_] := Permutations /@ IntegerPartitions[n] // Flatten[#, 1]&;
    logConcaveQ[p_] := And @@ Table[p[[i]]^2 >= p[[i-1]]*p[[i+1]], {i, 2, Length[p]-1}]; a[n_] := Count[compos[n], p_?logConcaveQ]; Table[an = a[n]; Print["a(", n, ") = ", an]; a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 29 2016 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],GreaterEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,15}] (* Gus Wiseman, Mar 15 2021 *)
  • Sage
    def A069916(n) : return sum(all(p[i]^2 >= p[i-1] * p[i+1] for i in range(1, len(p)-1)) for p in Compositions(n)) # Eric M. Schmidt, Sep 29 2013

A317081 Number of integer partitions of n whose multiplicities cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 5, 9, 11, 16, 20, 30, 34, 50, 58, 79, 96, 129, 152, 203, 243, 307, 375, 474, 563, 707, 850, 1042, 1246, 1532, 1815, 2215, 2632, 3173, 3765, 4525, 5323, 6375, 7519, 8916, 10478, 12414, 14523, 17133, 20034, 23488, 27422, 32090, 37285, 43511, 50559
Offset: 0

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Comments

Also the number of integer partitions of n with distinct section-sums, where the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. - Gus Wiseman, Apr 21 2025

Examples

			The a(1) = 1 through a(9) = 16 partitions:
 (1) (2) (3)  (4)   (5)   (6)   (7)    (8)    (9)
         (21) (31)  (32)  (42)  (43)   (53)   (54)
              (211) (41)  (51)  (52)   (62)   (63)
                    (221) (321) (61)   (71)   (72)
                    (311) (411) (322)  (332)  (81)
                                (331)  (422)  (432)
                                (421)  (431)  (441)
                                (511)  (521)  (522)
                                (3211) (611)  (531)
                                       (3221) (621)
                                       (4211) (711)
                                              (3321)
                                              (4221)
                                              (4311)
                                              (5211)
                                              (32211)
		

Crossrefs

The case with parts also covering an initial interval is A317088.
These partitions are ranked by A317090.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A047966 counts partitions with constant section-sums.
A048767 interchanges prime indices and prime multiplicities (Look-and-Say), see A048768.
A055932 lists numbers whose prime indices cover an initial interval.
A116540 counts normal set multipartitions.
A304442 counts partitions with equal run-sums, ranks A353833.
A381436 lists the section-sum partition of prime indices.
A381440 lists the Look-and-Say partition of prime indices.

Programs

  • Mathematica
    normalQ[m_]:=Union[m]==Range[Max[m]];
    Table[Length[Select[IntegerPartitions[n],normalQ[Length/@Split[#]]&]],{n,30}]
  • Python
    from sympy.utilities.iterables import partitions
    def A317081(n):
        if n == 0:
            return 1
        c = 0
        for d in partitions(n):
            s = set(d.values())
            if len(s) == max(s):
                c += 1
        return c # Chai Wah Wu, Jun 22 2020

A345171 Numbers whose multiset of prime factors has no alternating permutation.

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 80, 81, 88, 96, 104, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 208, 224, 232, 240, 243, 248, 250, 256, 270, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336, 343, 344, 351
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

First differs from A335448 in having 270.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
Also Heinz numbers of integer partitions without a wiggly permutation, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   16: {1,1,1,1}
   24: {1,1,1,2}
   25: {3,3}
   27: {2,2,2}
   32: {1,1,1,1,1}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   49: {4,4}
   54: {1,2,2,2}
   56: {1,1,1,4}
   64: {1,1,1,1,1,1}
   80: {1,1,1,1,3}
   81: {2,2,2,2}
   88: {1,1,1,5}
   96: {1,1,1,1,1,2}
		

Crossrefs

Removing squares of primes A001248 gives A344653, counted by A344654.
A superset of A335448, which is counted by A325535.
Positions of 0's in A345164.
The partitions with these Heinz numbers are counted by A345165.
The complement is A345172, counted by A345170.
The separable case is A345173, counted by A345166.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions, complement A261983.
A025047 counts alternating or wiggly compositions, directed A025048, A025049.
A325534 counts separable partitions, ranked by A335433.
A344606 counts alternating permutations of prime indices with twins.
A344742 ranks twins and partitions with an alternating permutation.
A345192 counts non-alternating compositions.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[100],Select[Permutations[Flatten[ ConstantArray@@@FactorInteger[#]]],wigQ]=={}&]

A353849 Number of distinct positive run-sums of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 3, 3, 1, 2, 3, 1, 2, 3, 2, 1, 2, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 2, 1, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3
Offset: 0

Views

Author

Gus Wiseman, May 30 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 462903 in standard order is (1,1,4,7,1,2,1,1,1), with run-sums (2,4,7,1,2,3), of which a(462903) = 5 are distinct.
		

Crossrefs

Counting repeated runs also gives A124767.
Positions of first appearances are A246534.
For distinct runs instead of run-sums we have A351014 (firsts A351015).
A version for partitions is A353835, weak A353861.
Positions of 1's are A353848, counted by A353851.
The version for binary expansion is A353929 (firsts A353930).
The run-sums themselves are listed by A353932, with A353849 distinct terms.
For distinct run-lengths instead of run-sums we have A354579.
A005811 counts runs in binary expansion.
A066099 lists compositions in standard order.
A165413 counts distinct run-lengths in binary expansion.
A297770 counts distinct runs in binary expansion, firsts A350952.
A353847 represents the run-sum transformation for compositions.
A353853-A353859 pertain to composition run-sum trajectory.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Total/@Split[stc[n]]]],{n,0,100}]

A353853 Trajectory of the composition run-sum transformation (or condensation) of n, using standard composition numbers.

Original entry on oeis.org

0, 1, 2, 3, 2, 4, 5, 6, 7, 4, 8, 9, 10, 8, 11, 10, 8, 12, 13, 14, 10, 8, 15, 8, 16, 17, 18, 19, 18, 20, 21, 17, 22, 23, 20, 24, 25, 26, 24, 27, 26, 24, 28, 20, 29, 21, 17, 30, 18, 31, 16, 32, 33, 34, 35, 34, 36, 32, 37, 38, 39, 36, 32, 40, 41, 42, 32
Offset: 0

Views

Author

Gus Wiseman, Jun 01 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353847) until the rank of an anti-run is reached. For example, the trajectory 11 -> 10 -> 8 given in row 11 corresponds to the trajectory (2,1,1) -> (2,2) -> (4).

Examples

			Triangle begins:
   0
   1
   2
   3  2
   4
   5
   6
   7  4
   8
   9
  10  8
  11 10  8
  12
  13
  14 10  8
For example, the trajectory of 29 is 29 -> 21 -> 17, corresponding to the compositions (1,1,2,1) -> (2,2,1) -> (4,1).
		

Crossrefs

These sequences for partitions are A353840-A353846.
This is the iteration of A353847, with partition version A353832.
Row-lengths are A353854, counted by A353859.
Final terms are A353855.
Counting rows by weight of final term gives A353856.
Rows ending in a power of 2 are A353857, counted by A353858.
A003242 counts anti-run compositions, ranked by A333489, complement A261983.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order.
A318928 gives runs-resistance of binary expansion.
A329739 counts compositions with all distinct run-lengths.
A333627 ranks the run-lengths of standard compositions.
A351014 counts distinct runs in standard compositions, firsts A351015.
A353853-A353859 pertain to composition run-sum trajectory.
A353929 counts distinct runs in binary expansion, firsts A353930.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[NestWhileList[stcinv[Total/@Split[stc[#]]]&,n,MatchQ[stc[#],{_,x_,x_,_}]&],{n,0,50}]

A374518 Number of integer compositions of n whose leaders of anti-runs are distinct.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 17, 32, 58, 112, 201, 371, 694, 1276, 2342, 4330, 7958, 14613, 26866, 49303, 90369, 165646, 303342, 555056, 1015069, 1855230
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 1 through a(6) = 17 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)
                (12)  (13)   (14)   (15)
                (21)  (31)   (23)   (24)
                      (121)  (32)   (42)
                      (211)  (41)   (51)
                             (122)  (123)
                             (131)  (132)
                             (212)  (141)
                             (311)  (213)
                                    (231)
                                    (312)
                                    (321)
                                    (411)
                                    (1212)
                                    (1221)
                                    (2112)
                                    (2121)
		

Crossrefs

These compositions have ranks A374638.
The complement is counted by A374678.
For partitions instead of compositions we have A375133.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A274174, ranks A374249.
- For leaders of weakly increasing runs we have A374632, ranks A374768.
- For leaders of strictly increasing runs we have A374687, ranks A374698.
- For leaders of weakly decreasing runs we have A374743, ranks A374701.
- For leaders of strictly decreasing runs we have A374761, ranks A374767.
Other types of run-leaders (instead of distinct):
- For identical leaders we have A374517.
- For weakly increasing leaders we have A374681.
- For strictly increasing leaders we have A374679.
- For weakly decreasing leaders we have A374682.
- For strictly decreasing leaders we have A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],UnsameQ@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A005314 For n = 0, 1, 2, a(n) = n; thereafter, a(n) = 2*a(n-1) - a(n-2) + a(n-3).

Original entry on oeis.org

0, 1, 2, 3, 5, 9, 16, 28, 49, 86, 151, 265, 465, 816, 1432, 2513, 4410, 7739, 13581, 23833, 41824, 73396, 128801, 226030, 396655, 696081, 1221537, 2143648, 3761840, 6601569, 11584946, 20330163, 35676949, 62608681, 109870576, 192809420, 338356945, 593775046
Offset: 0

Views

Author

Keywords

Comments

Number of compositions of n into parts congruent to {1,2} mod 4. - Vladeta Jovovic, Mar 10 2005
a(n)/a(n-1) tends to A109134; an eigenvalue of the matrix M and a root to the characteristic polynomial. - Gary W. Adamson, May 25 2007
Starting with offset 1 = INVERT transform of (1, 1, 0, 0, 1, 1, 0, 0, ...). - Gary W. Adamson, May 04 2009
a(n-2) is the top left entry of the n-th power of the 3 X 3 matrix [0, 1, 0; 0, 1, 1; 1, 0, 1] or of the 3 X 3 matrix [0, 0, 1; 1, 1, 0; 0, 1, 1]. - R. J. Mathar, Feb 03 2014
Counts closed walks of length (n+2) at a vertex of a unidirectional triangle containing a loop on remaining two vertices. - David Neil McGrath, Sep 15 2014
Also the number of binary words of length n that begin with 1 and avoid the subword 101. a(5) = 9: 10000, 10001, 10010, 10011, 11000, 11001, 11100, 11110, 11111. - Alois P. Heinz, Jul 21 2016
Also the number of binary words of length n-1 such that every two consecutive 0s are immediately followed by at least two consecutive 1s. a(4) = 5: 010, 011, 101, 110, 111. - Jerrold Grossman, May 03 2024

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 16*x^6 + 28*x^7 + 49*x^8 + ...
From _Gus Wiseman_, Nov 25 2019: (Start)
a(n) is the number of subsets of {1..n} containing n such that if x and x + 2 are both in the subset, then so is x + 1. For example, the a(1) = 1 through a(5) = 9 subsets are:
  {1}  {2}    {3}      {4}        {5}
       {1,2}  {2,3}    {1,4}      {1,5}
              {1,2,3}  {3,4}      {2,5}
                       {2,3,4}    {4,5}
                       {1,2,3,4}  {1,2,5}
                                  {1,4,5}
                                  {3,4,5}
                                  {2,3,4,5}
                                  {1,2,3,4,5}
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals row sums of triangle A099557.
Equals row sums of triangle A224838.
Cf. A011973 (starting with offset 1 = Falling diagonal sums of triangle with rows displayed as centered text).
First differences of A005251, shifted twice to the left.

Programs

  • Haskell
    a005314 n = a005314_list !! n
    a005314_list = 0 : 1 : 2 : zipWith (+) a005314_list
       (tail $ zipWith (-) (map (2 *) $ tail a005314_list) a005314_list)
    -- Reinhard Zumkeller, Oct 14 2011
    
  • Magma
    [0] cat [n le 3 select n else 2*Self(n-1) - Self(n-2) + Self(n-3):n in [1..35]]; // Marius A. Burtea, Oct 24 2019
    
  • Magma
    R:=PowerSeriesRing(Integers(), 36); [0] cat Coefficients(R!( x/(1-2*x+x^2-x^3))); // Marius A. Burtea, Oct 24 2019
    
  • Maple
    A005314 := proc(n)
        option remember ;
        if n <=2 then
            n;
        else
            2*procname(n-1)-procname(n-2)+procname(n-3) ;
        end if;
    end proc:
    seq(A005314(n),n=0..20) ; # R. J. Mathar, Feb 25 2024
  • Mathematica
    LinearRecurrence[{2, -1, 1}, {0, 1, 2}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
    Table[Sum[Binomial[n - Floor[(k + 1)/2], n - Floor[(3 k - 1)/2]], {k, 0, n}], {n, 0, 100}] (* John Molokach, Jul 21 2013 *)
    Table[Sum[Binomial[n - Floor[(4 n + 15 - 6 k + (-1)^k)/12], n - Floor[(4 n + 15 - 6 k + (-1)^k)/12] - Floor[(2 n - 1)/3] + k - 1], {k, 1, Floor[(2 n + 2)/3]}], {n, 0, 100}] (* John Molokach, Jul 25 2013 *)
    a[ n_] := If[ n < 0, SeriesCoefficient[ x^2 / (1 - x + 2 x^2 - x^3), {x, 0, -n}], SeriesCoefficient[ x / (1 - 2 x + x^2 - x^3), {x, 0, n}]]; (* Michael Somos, Dec 13 2013 *)
    RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[n]==2a[n-1]-a[n-2]+a[n-3]},a,{n,40}] (* Harvey P. Dale, May 13 2018 *)
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&!MatchQ[#,{_,x_,y_,_}/;x+2==y]&]],{n,0,10}] (* Gus Wiseman, Nov 25 2019 *)
  • PARI
    {a(n) = sum(k=0, (2*n-1)\3, binomial(n-1-k\2, k))}
    
  • PARI
    {a(n) = if( n<0, polcoeff( x^2 / (1 - x + 2*x^2 - x^3) + x * O(x^-n), -n), polcoeff( x / (1 - 2*x + x^2 - x^3) + x * O(x^n), n))}; /* Michael Somos, Sep 18 2012 */
    
  • SageMath
    def A005314(n): return sum( binomial(n-k, 2*k+1) for k in range(floor((n+2)/3)) )
    [A005314(n) for n in range(51)] # G. C. Greubel, Nov 10 2023

Formula

From Paul D. Hanna, Oct 22 2004: (Start)
G.f.: x/(1-2*x+x^2-x^3).
a(n) = Sum_{k=0..[(2n-1)/3]} binomial(n-1-[k/2], k), where [x]=floor(x). (End)
a(n) = Sum_{k=0..n} binomial(n-k, 2*k+1).
23*a_n = 3*P_{2n+2} + 7*P_{2n+1} - 2*P_{2n}, where P_n are the Perrin numbers, A001608. - Don Knuth, Dec 09 2008
G.f. (1-z)*(1+z^2)/(1-2*z+z^2-z^3) for the augmented version 1, 1, 2, 3, 5, 9, 16, 28, 49, 86, 151, ... was given in Simon Plouffe's thesis of 1992.
a(n) = a(n-1) + a(n-2) + a(n-4) = a(n-2) + A049853(n-1) = a(n-1) + A005251(n) = Sum_{i <= n} A005251(i).
a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-k, 2*k+1). - Richard L. Ollerton, May 12 2004
M^n*[1,0,0] = [a(n-2), a(n-1), a]; where M = the 3 X 3 matrix [0,1,0; 0,0,1; 1,-1,2]. Example M^5*[1,0,0] = [3,5,9]. - Gary W. Adamson, May 25 2007
a(n) = A000931(2*n + 4). - Michael Somos, Sep 18 2012
a(n) = A077954(-n - 2). - Michael Somos, Sep 18 2012
G.f.: 1/( 1 - Sum_{k>=0} x*(x-x^2+x^3)^k ) - 1. - Joerg Arndt, Sep 30 2012
a(n) = Sum_{k=0..n} binomial( n-floor((k+1)/2), n-floor((3k-1)/2) ). - John Molokach, Jul 21 2013
a(n) = Sum_{k=1..floor((2*n+2)/3)} binomial(n - floor((4*n+15-6*k+(-1)^k)/12), n - floor((4*n+15-6*k+(-1)^k)/12) - floor((2*n-1)/3) + k - 1). - John Molokach, Jul 24 2013
a(n) = round(A001608(2n+1)*r) where r is the real root of 23*x^3 - 23*x^2 + 8*x - 1 = 0, r = 0.4114955... - Richard Turk, Oct 24 2019
a(n+2) = n + 2 + Sum_{k=0..n} (n-k)*a(k). - Greg Dresden and Yichen P. Wang, Sep 16 2021
a(n) ~ (19 - r + 11*r^2) / (23 * r^(n-1)), where r = 0.569840290998... is the root of the equation r*(2 - r + r^2) = 1. - Vaclav Kotesovec, Apr 14 2024
a(n) = n*3F2(1/3-n/3,2/3-n/3,1-n/3;-n,3/2;27/4). - R. J. Mathar, Jun 27 2024
If p,q,r are the three solutions to x^3 = 2x^2 - x + 1, then a(n) = p^(n+1)/((p-q)*(p-r)) + q^(n+1)/((q-p)*(q-r)) + r^(n+1)/((r-p)*(r-q)). Compare to similar formula for A005251. - Greg Dresden and AnXing Yang, Aug 19 2025

Extensions

More terms and additional formulas from Henry Bottomley, Jul 21 2000
Plouffe's g.f. edited by R. J. Mathar, May 12 2008
Previous Showing 81-90 of 507 results. Next