A003149
a(n) = Sum_{k=0..n} k!*(n - k)!.
Original entry on oeis.org
1, 2, 5, 16, 64, 312, 1812, 12288, 95616, 840960, 8254080, 89441280, 1060369920, 13649610240, 189550368000, 2824077312000, 44927447040000, 760034451456000, 13622700994560000, 257872110354432000, 5140559166898176000, 107637093007589376000, 2361827297364885504000
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (1.1.11 b, p.342).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Volume 1 (1986), p. 49. [From Emeric Deutsch, Oct 28 2008]
- T. D. Noe, Table of n, a(n) for n = 0..100
- Joerg Arndt, Generating Random Permutations, PhD thesis, Australian National University, Canberra, Australia, (2010).
- Fred Curtis, Resistance-network Problems.
- Bakir Farhi, On a curious integer sequence, arXiv:2204.10136 [math.NT], 2022.
- Todd Feil, Gary Kennedy and David Callan, Problem E3467, Amer. Math. Monthly, 100 (1993), 800-801. [From _Emeric Deutsch_, Oct 28 2008]
- Henry W. Gould, Letter to N. J. A. Sloane, Nov 1973, and various attachments.
- IBM, "Ponder This" puzzle for April, 2006
- T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002.
- F. Nedemeyer and Y. Smorodinsky, Resistance in the multidimensional cube, Quantum 7:1 (1996) 12-15 and 63.
- R. Sprugnoli, Moments of Reciprocals of Binomial Coefficients, Journal of Integer Sequences, 14 (2011), #11.7.8.
- V. Strehl, The average number of splitters in a random permutation [Unpublished; included here with the author's permission.]
- B. Sury, Sum of the reciprocals of the binomial coefficients, Europ. J. Comb., 14 (1993), 351-353.
- Eric Weisstein's World of Mathematics, Incomplete Beta Function.
- Eric Weisstein's World of Mathematics, Lerch Transcendent.
- Index to sequences related to resistances.
-
F:=Factorial;; List([0..20], n-> Sum([0..n], k-> F(k)*F(n-k)) ); # G. C. Greubel, Dec 29 2019
-
F:=Factorial; [ (&+[F(k)*F(n-k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 29 2019
-
seq( add(k!*(n-k)!, k=0..n), n=0..20); # G. C. Greubel, Dec 29 2019
# second Maple program:
a:= proc(n) option remember; `if`(n<2, n+1,
((3*n+1)*a(n-1)-n^2*a(n-2))/2)
end:
seq(a(n), n=0..22); # Alois P. Heinz, Aug 08 2025
-
Table[Sum[k!(n-k)!,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Mar 28 2012 *)
Table[(n+1)!/2^n*Sum[2^k/(k+1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 27 2012 *)
Round@Table[-2 (n+1)! Re[LerchPhi[2, 1, n+2]], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 12 2015 *)
Table[(n+1)!*Sum[Binomial[n+1, 2*j+1]/(2*j+1), {j, 0, n}]/2^n, {n, 0, 20}] (* Vaclav Kotesovec, Dec 04 2015 *)
Series[Exp[-2x] ExpIntegralEi[x]^2, {x, Infinity, 20}][[3]] (* Vladimir Reshetnikov, Apr 24 2016 *)
Table[2*(-1)^n * Sum[(2^k - 1) * StirlingS1[n, k] * BernoulliB[k], {k, 0, n}], {n, 1, 25}] (* Vaclav Kotesovec, Oct 04 2022 *)
-
a(n)=sum(k=0,n,k!*(n-k)!)
-
a(n)=if(n<0,0,(n+1)!*polcoeff(log(1-x+x^2*O(x^n))/(x/2-1),n+1))
-
a(n) = my(A = 1, B = 1); for(k=1, n, B *= k; A = (n-k+1)*A + B); A \\ Mikhail Kurkov, Aug 08 2025
-
def a(n: int) -> int:
if n < 2: return n + 1
app, ap = 1, 2
for i in range(2, n + 1):
app, ap = ap, ((3 * i + 1) * ap - (i * i) * app) >> 1
return ap
print([a(n) for n in range(23)]) # Peter Luschny, Aug 08 2025
-
f=factorial; [sum(f(k)*f(n-k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Dec 29 2019
A075834
Coefficients of power series A(x) such that n-th term of A(x)^n = n! x^(n-1) for n > 0.
Original entry on oeis.org
1, 1, 1, 2, 7, 34, 206, 1476, 12123, 111866, 1143554, 12816572, 156217782, 2057246164, 29111150620, 440565923336, 7101696260883, 121489909224618, 2198572792193786, 41966290373704332, 842706170872913634, 17759399688526009020, 391929722837419044420
Offset: 0
At n=7, the 7th term of A(x)^7 is 7! x^6, as demonstrated by A(x)^7 = 1 + 7 x + 28 x^2 + 91 x^3 + 294 x^4 + 1092 x^5 + 5040 x^6 + 29093 x^7 + 203651 x^8 + ... .
A(x) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 34*x^5 + 206*x^6 + ... = x/series_reversion(x + x^2 + 2*x^3 + 6*x^4 + 24*x^5 + 120*x^6 + ...).
Related expansions:
log(A(x)) = x + x^2/2 + 4*x^3/3 + 21*x^4/4 + 136*x^5/5 + 1030*x^6/6 + ...;
1 - x/(A(x) - 1) = x + x^2 + 4*x^3 + 21*x^4 + 136*x^5 + 1030*x^6 +...;
(d/dx)((A(x) - 1)/x) = 1 + 4*x + 21*x^2 + 136*x^3 + 1030*x^4 + ... .
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- F. Ardila, F. Rincón and L. Williams, Positroids and non-crossing partitions, arXiv preprint arXiv:1308.2698 [math.CO], 2013.
- Daniel Birmajer, Juan B. Gil and Michael D. Weiner, A family of Bell transformations, arXiv:1803.07727 [math.CO], 2018.
- David Callan, Counting stabilized-interval-free permutations, arXiv:math/0310157 [math.CO], 2003.
- David Callan, Counting Stabilized-Interval-Free Permutations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.1.8.
- Colin Defant and Nathan Williams, Coxeter Pop-Tsack Torsing, arXiv:2106.05471 [math.CO], 2021.
- Jesse Elliott, Asymptotic expansions of the prime counting function, arXiv:1809.06633 [math.NT], 2018.
- Hyungju Park, An Asymptotic Formula for the Number of Stabilized-Interval-Free Permutations, J. Int. Seq. (2023) Vol. 26, Art. 23.9.3.
-
a = ConstantArray[0,20]; a[[1]]=1; a[[2]]=1; a[[3]]=2; Do[a[[n]] = (n-1)*a[[n-1]] + Sum[(j-1)*a[[j]]*a[[n-j]],{j,2,n-2}],{n,4,20}]; Flatten[{1,a}] (* Vaclav Kotesovec after David Callan, Feb 22 2014 *)
InverseSeries[Series[Exp[-x] ExpIntegralEi[x], {x, Infinity, 20}]][[3]] (* Vladimir Reshetnikov, Apr 24 2016 *)
-
a(n)=if(n<0,0,if(n<=1,1,(n-1)*a(n-1)+sum(j=2,n-2,(j-1)*a(j)*a(n-j));))
-
a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,(k-1)!))))[n+1] \\ Paul D. Hanna, Jul 09 2006
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/(1-x*deriv(A)/A));polcoeff(A,n)}
-
{a(n)=local(F=1+x*O(x^n)); for(i=0,n,F=1+x*F+x^2*F*deriv(F)+x*O(x^n));polcoeff(1+x*F,n)} \\ Paul D. Hanna, Sep 02 2008
A059438
Triangle T(n,k) (1 <= k <= n) read by rows: T(n,k) is the number of permutations of [1..n] with k components.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 13, 7, 3, 1, 71, 32, 12, 4, 1, 461, 177, 58, 18, 5, 1, 3447, 1142, 327, 92, 25, 6, 1, 29093, 8411, 2109, 531, 135, 33, 7, 1, 273343, 69692, 15366, 3440, 800, 188, 42, 8, 1, 2829325, 642581, 125316, 24892, 5226, 1146, 252, 52, 9, 1
Offset: 1
Triangle begins:
[1] [ 1]
[2] [ 1, 1]
[3] [ 3, 2, 1]
[4] [ 13, 7, 3, 1]
[5] [ 71, 32, 12, 4, 1]
[6] [ 461, 177, 58, 18, 5, 1]
[7] [ 3447, 1142, 327, 92, 25, 6, 1]
[8] [ 29093, 8411, 2109, 531, 135, 33, 7, 1]
[9] [273343, 69692, 15366, 3440, 800, 188, 42, 8, 1]
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 262 (#14).
- Antonio Di Crescenzo, Barbara Martinucci, and Abdelaziz Rhandi, A linear birth-death process on a star graph and its diffusion approximation, arXiv:1405.4312 [math.PR], 2014.
- FindStat - Combinatorial Statistic Finder, The decomposition number of a permutation.
- Peter Hegarty and Anders Martinsson, On the existence of accessible paths in various models of fitness landscapes, arXiv:1210.4798 [math.PR], 2012-2014. - From _N. J. A. Sloane_, Jan 01 2013
- Sergey Kitaev and Philip B. Zhang, Distributions of mesh patterns of short lengths, arXiv:1811.07679 [math.CO], 2018.
A version with reflected rows is
A263484.
-
# Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
PMatrix(10, A003319); # Peter Luschny, Oct 09 2022
-
(* p = indecomposable permutations = A003319 *) p[n_] := p[n] = n! - Sum[ k!*p[n-k], {k, 1, n-1}]; t[n_, k_] /; n < k = 0; t[n_, 1] := p[n]; t[n_, k_] /; n >= k := t[n, k] = Sum[ t[n-j, k-1]*p[j], {j, 1, n}]; Flatten[ Table[ t[n, k], {n, 1, 10}, {k, 1, n}] ] (* Jean-François Alcover, Mar 06 2012, after Philippe Deléham *)
-
def A059438_triangle(dim) :
R = PolynomialRing(ZZ, 'x')
C = [R(0)] + [R(1) for i in range(dim+1)]
A = [(i + 2) // 2 for i in range(dim+1)]
A[0] = R.gen(); T = []
for k in range(1, dim+1) :
for n in range(k, 0, -1) :
C[n] = C[n-1] + C[n+1] * A[n-1]
T.append(list(C[1])[1::])
return T
A059438_triangle(8) # Peter Luschny, Sep 10 2022
-
# Alternatively, using the function PartTrans from A357078:
# Adds a (0,0)-based column (1, 0, 0, ...) to the left of the triangle.
dim = 10
A = ZZ[['t']]; g = A([0]+[factorial(n) for n in range(1, 30)]).O(dim+2)
PartTrans(dim, lambda n: list(g / (1 + g))[n]) # Peter Luschny, Sep 11 2022
A111528
Square table, read by antidiagonals, where the g.f. for row n+1 is generated by: x*R_{n+1}(x) = (1+n*x - 1/R_n(x))/(n+1) with R_0(x) = Sum_{n>=0} n!*x^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 13, 24, 1, 1, 5, 22, 71, 120, 1, 1, 6, 33, 148, 461, 720, 1, 1, 7, 46, 261, 1156, 3447, 5040, 1, 1, 8, 61, 416, 2361, 10192, 29093, 40320, 1, 1, 9, 78, 619, 4256, 23805, 99688, 273343, 362880, 1, 1, 10, 97, 876, 7045, 48096, 263313
Offset: 0
Table begins:
1, 1, 2, 6, 24, 120, 720, 5040, 40320, ...
1, 1, 3, 13, 71, 461, 3447, 29093, 273343, ...
1, 1, 4, 22, 148, 1156, 10192, 99688, 1069168, ...
1, 1, 5, 33, 261, 2361, 23805, 263313, 3161781, ...
1, 1, 6, 46, 416, 4256, 48096, 591536, 7840576, ...
1, 1, 7, 61, 619, 7045, 87955, 1187845, 17192275, ...
1, 1, 8, 78, 876, 10956, 149472, 2195208, 34398288, ...
1, 1, 9, 97, 1193, 16241, 240057, 3804353, 64092553, ...
1, 1, 10, 118, 1576, 23176, 368560, 6262768, 112784896, ...
Rows are generated by logarithms of factorial series:
log(1 + x + 2*x^2 + 6*x^3 + 24*x^4 + ... n!*x^n + ...) = x + (3/2)*x^2 + (13/3)*x^3 + (71/4)*x^4 + (461/5)*x^5 + ...
(1/2)*log(1 + 2*x + 6*x^2 + ... + ((n+1)!/1!)*x^n + ...) = x + (4/2)*x^2 + (22/3)*x^3 + (148/4)*x^4 + (1156/5)*x^5 + ...
(1/3)*log(1 + 3*x + 12*x^2 + 60*x^3 + ... + ((n+2)!/2!)*x^n + ...) = x + (5/2)*x^2 + (33/3)*x^3 + (261/4)*x^4 + (2361/5)*x^5 +...
G.f. of row n may be expressed by the continued fraction:
R_n(x) = 1/(1+n*x - (n+1)*x/(1+(n+1)*x - (n+2)*x/(1+(n+2)*x -...
or recursively by: R_n(x) = 1/(1+n*x - (n+1)*x*R_{n+1}(x)).
-
T := (n, k) -> coeff(series(hypergeom([n+1, 1], [], x)/hypergeom([n, 1], [], x), x, 21), x, k):
#display as a sequence
seq(seq(T(n-k, k), k = 0..n), n = 0..10);
# display as a square array
seq(print(seq(T(n, k), k = 0..10)), n = 0..10); # Peter Bala, Jul 16 2022
-
T[n_, k_] := T[n, k] = Which[n < 0 || k < 0, 0, k == 0 || k == 1, 1, n == 0, k!, True, (T[n - 1, k + 1] - T[n - 1, k])/n - Sum[T[n, j]*T[n - 1, k - j], {j, 1, k - 1}]]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2018 *)
-
{T(n,k)=if(n<0||k<0,0,if(k==0||k==1,1,if(n==0,k!, (T(n-1,k+1)-T(n-1,k))/n-sum(j=1,k-1,T(n,j)*T(n-1,k-j)))))}
for(n=0,10,for(k=0,10,print1(T(n,k),", ")); print(""))
-
{T(n,k)=if(n<0||k<0,0,if(k==0,1,if(n==0,k!, k/n*polcoeff(log(sum(m=0,k,(n-1+m)!/(n-1)!*x^m)),k))))}
for(n=0,10,for(k=0,10,print1(T(n,k),", ")); print(""))
A104980
Triangular matrix T, read by rows, that satisfies: SHIFT_LEFT(column 0 of T^p) = p*(column p+1 of T), or [T^p](m,0) = p*T(p+m,p+1) for all m>=1 and p>=-1.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 13, 7, 3, 1, 71, 33, 13, 4, 1, 461, 191, 71, 21, 5, 1, 3447, 1297, 461, 133, 31, 6, 1, 29093, 10063, 3447, 977, 225, 43, 7, 1, 273343, 87669, 29093, 8135, 1859, 353, 57, 8, 1, 2829325, 847015, 273343, 75609, 17185, 3251, 523, 73, 9, 1
Offset: 0
SHIFT_LEFT(column 0 of T^-1) = -1*(column 0 of T);
SHIFT_LEFT(column 0 of T^1) = 1*(column 2 of T);
SHIFT_LEFT(column 0 of T^2) = 2*(column 3 of T);
where SHIFT_LEFT of column sequence shifts 1 place left.
Triangle T begins:
1;
1, 1;
3, 2, 1;
13, 7, 3, 1;
71, 33, 13, 4, 1;
461, 191, 71, 21, 5, 1;
3447, 1297, 461, 133, 31, 6, 1;
29093, 10063, 3447, 977, 225, 43, 7, 1;
273343, 87669, 29093, 8135, 1859, 353, 57, 8, 1;
2829325, 847015, 273343, 75609, 17185, 3251, 523, 73, 9, 1; ...
Matrix inverse T^-1 is A104984 which begins:
1;
-1, 1;
-1, -2, 1;
-3, -1, -3, 1;
-13, -3, -1, -4, 1;
-71, -13, -3, -1, -5, 1;
-461, -71, -13, -3, -1, -6, 1; ...
Matrix T also satisfies:
[I + SHIFT_LEFT(T)] = [I - SHIFT_DOWN(T)]^-1, which starts:
1;
1, 1;
2, 1, 1;
7, 3, 1, 1;
33, 13, 4, 1, 1;
191, 71, 21, 5, 1, 1; ...
where SHIFT_DOWN(T) shifts columns of T down 1 row,
and SHIFT_LEFT(T) shifts rows of T left 1 column,
with both operations leaving zeros in the diagonal.
-
T[n_, k_]:= T[n, k]= If[nJean-François Alcover, Aug 09 2018, from PARI *)
-
{T(n,k) = if(n
-
{T(n,k) = if(n
-
@CachedFunction
def T(n,k):
if (k<0 or k>n): return 0
elif (k==n): return 1
elif (k==n-1): return n
else: return k*T(n, k+1) + sum( T(j, 0)*T(n, j+k+1) for j in (0..n-k-1) )
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 07 2021
Original entry on oeis.org
1, 1, 4, 22, 148, 1156, 10192, 99688, 1069168, 12468208, 157071424, 2126386912, 30797423680, 475378906432, 7793485765888, 135284756985472, 2479535560687360, 47860569736036096, 970606394944476160, 20635652201785613824, 459015456156148876288, 10662527360021306782720
Offset: 0
(1/2)*log(1 + 2*x + 6*x^2 + ... + ((n+1)!/1!)*x^n + ...)
= x + (4/2)*x^2 + (22/3)*x^3 + (148/4)*x^4 + (1156/5)*x^5 + ...
- Robert Israel, Table of n, a(n) for n = 0..410
- Paul Barry, A note on number triangles that are almost their own production matrix, arXiv:1804.06801 [math.CO], 2018.
- Richard J. Martin and Michael J. Kearney, Integral representation of certain combinatorial recurrences, Combinatorica: 35:3 (2015), 309-315.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
-
N:= 30: # to get a(0) to a(N)
g:= 1/2*log(add((n+1)!*x^n,n=0..N+1)):
S:= series(g,x,N+1);
1, seq(j*coeff(S,x,j),j=0..N); # Robert Israel, Jul 10 2015
-
T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n - Sum[T[n, j] T[n-1, k-j], {j, 1, k-1}]];
a[n_] := T[2, n];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 09 2018 *)
-
{a(n)=if(n<0,0,if(n==0,1, (n/2)*polcoeff(log(sum(m=0,n,(m+1)!/1!*x^m)),n)))}
Original entry on oeis.org
1, 1, 5, 33, 261, 2361, 23805, 263313, 3161781, 40907241, 567074925, 8385483393, 131787520101, 2194406578521, 38605941817245, 715814473193073, 13956039627763221, 285509132504621001, 6116719419966460365
Offset: 0
(1/3)*(log(1 + 3*x + 12*x^2 + 60*x^3 + ... + (n+2)!/2!)*x^n + ...)
= x + 5/2*x^2 + 33/3*x^3 + 261/4*x^4 + 2361/5*x^5 + ...
-
T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n - Sum[T[n, j]*T[n-1, k-j], {j, 1, k-1}]];
a[n_] := T[3, n];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Aug 09 2018 *)
-
{a(n)=if(n<0,0,if(n==0,1, (n/3)*polcoeff(log(sum(m=0,n,(m+2)!/2!*x^m) + x*O(x^n)),n)))} \\ fixed by Vaclav Kotesovec, Jul 27 2015
Original entry on oeis.org
1, 1, 6, 46, 416, 4256, 48096, 591536, 7840576, 111226816, 1680157056, 26918720896, 455971214336, 8143926373376, 153013563734016, 3017996904928256, 62369444355076096, 1348096649995841536, 30426167700424728576, 715935203128235401216
Offset: 0
(1/4)*(log(1 + 4*x + 20*x^2 + 120*x^3 + ... + (n+3)!/3!)*x^n + ...)
= x + 6/2*x^2 + 46/3*x^3 + 416/4*x^4 + 4256/5*x^5 + ...
-
T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n-Sum[T[n, j]*T[n-1, k-j], {j, 1, k-1}]];
a[n_] := T[4, n];
a /@ Range[0, 19] (* Jean-François Alcover, Oct 01 2019 *)
-
{a(n)=if(n<0,0,if(n==0,1, (n/4)*polcoeff(log(sum(m=0,n,(m+3)!/3!*x^m) +x*O(x^n)),n)))}
for(n=0,20,print1(a(n),", "))
A090238
Triangle T(n, k) read by rows. T(n, k) is the number of lists of k unlabeled permutations whose total length is n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 24, 16, 6, 1, 0, 120, 72, 30, 8, 1, 0, 720, 372, 152, 48, 10, 1, 0, 5040, 2208, 828, 272, 70, 12, 1, 0, 40320, 14976, 4968, 1576, 440, 96, 14, 1, 0, 362880, 115200, 33192, 9696, 2720, 664, 126, 16, 1, 0, 3628800, 996480, 247968, 64704, 17312, 4380, 952, 160, 18, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 6, 4, 1;
0, 24, 16, 6, 1;
0, 120, 72, 30, 8, 1;
0, 720, 372, 152, 48, 10, 1;
0, 5040, 2208, 828, 272, 70, 12, 1;
0, 40320, 14976, 4968, 1576, 440, 96, 14, 1;
0, 366880, 115200, 33192, 9696, 2720, 664, 126, 16, 1;
0, 3628800, 996480, 247968, 64704, 17312, 4380, 952, 160, 18, 1;
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.
-
T := proc(n,k) option remember; if n=0 and k=0 then return 1 fi;
if n>0 and k=0 or k>0 and n=0 then return 0 fi;
T(n-1,k-1)+(n+k-1)*T(n-1,k)/k end:
for n from 0 to 10 do seq(T(n,k),k=0..n) od; # Peter Luschny, Mar 03 2016
# Uses function PMatrix from A357368.
PMatrix(10, factorial); # Peter Luschny, Oct 09 2022
-
T[n_, k_] := T[n, k] = T[n-1, k-1] + ((n+k-1)/k)*T[n-1, k]; T[0, 0] = 1; T[, 0] = T[0, ] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2018 *)
Original entry on oeis.org
1, 1, 7, 61, 619, 7045, 87955, 1187845, 17192275, 264940405, 4326439075, 74593075525, 1353928981075, 25809901069525, 515683999204675, 10779677853137125, 235366439343773875, 5359766538695291125
Offset: 0
(1/5)*(log(1 + 5*x + 30*x^2 + 210*x^3 + ... + (n+4)!/4!)*x^n + ...)
= x + 7/2*x^2 + 61/3*x^3 + 619/4*x^4 + 7045/5*x^5 + ...
-
m = 18; (-1/(5x)) ContinuedFractionK[-i x, 1 + i x, {i, 5, m+4}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 02 2019 *)
-
{a(n)=if(n<0,0,if(n==0,1, (n/5)*polcoeff(log(sum(m=0,n,(m+4)!/4!*x^m) + x*O(x^n)),n)))} \\ fixed by Vaclav Kotesovec, Jul 27 2015
Comments