A072330
Common difference n such that primitive triangles exist which are n-arithmetic (i.e., primitive Heronian triangles whose sides in arithmetic progression have common difference n).
Original entry on oeis.org
1, 11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, 107, 109, 121, 131, 143, 157, 167, 169, 179, 181, 191, 193, 227, 229, 239, 241, 251, 253, 263, 277, 299, 311, 313, 337, 347, 349, 359, 373, 383, 397, 407, 409, 419, 421, 431, 433, 443, 457, 467, 479, 481, 491, 503
Offset: 1
-
isA072330 := proc(n)
if n = 1 then
true;
else
for p in ifactors(n)[2] do
if not modp(op(1,p),12) in {1,11} then
return false ;
end if;
end do:
true;
end if;
end proc:
for n from 1 to 1000 do
if isA072330(n) then
printf("%d,",n) ;
end if;
end do: # R. J. Mathar, Feb 26 2017
-
fac12Q[n_] := And @@ (MemberQ[{1, 11}, #] & /@ Mod[First /@ FactorInteger@ n, 12]); Select[Range[600], fac12Q] (* Frank M Jackson, Apr 09 2016 with simplification by Giovanni Resta *)
okQ[n_] := AllTrue[FactorInteger[n][[All, 1]], MatchQ[Mod[#, 12], 1|11]&];
Select[Range[1000], okQ] (* Jean-François Alcover, Mar 06 2020 *)
A103999
Square array T(M,N) read by antidiagonals: number of dimer tilings of a 2M x 2N Klein bottle.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 16, 34, 1, 1, 54, 196, 198, 1, 1, 196, 1666, 2704, 1154, 1, 1, 726, 16384, 64152, 37636, 6726, 1, 1, 2704, 171394, 1844164, 2549186, 524176, 39202, 1, 1, 10086, 1844164, 57523158, 220581904, 101757654, 7300804, 228486, 1
Offset: 0
Array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 6, 34, 198, 1154, 6726, 39202, ...
1, 16, 196, 2704, 37636, 524176, 7300804, ...
1, 54, 1666, 64152, 2549186, 101757654, 4064620168, ...
1, 196, 16384, 1844164, 220581904, 26743369156, 3252222705664, ...
1, 726,171394, 57523158, 21050622914, 7902001927776, 2988827208115522, ...
-
T[m_, n_] := Product[4 Sin[(4k-1) Pi/(4n)]^2 + 4 Cos[j Pi/(2m+1)]^2, {j, 1, m}, {k, 1, n}] // Round;
Table[T[m-n, n], {m, 0, 9}, {n, 0, m}] // Flatten (* Jean-François Alcover, Aug 20 2018 *)
-
default(realprecision, 120);
{T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin((4*a-1)*Pi/(4*n))^2+4*sin((2*b-1)*Pi/(2*k))^2)))} \\ Seiichi Manyama, Jan 11 2021
A067902
a(n) = 14*a(n-1) - a(n-2); a(0) = 2, a(1) = 14.
Original entry on oeis.org
2, 14, 194, 2702, 37634, 524174, 7300802, 101687054, 1416317954, 19726764302, 274758382274, 3826890587534, 53301709843202, 742397047217294, 10340256951198914, 144021200269567502, 2005956546822746114, 27939370455248878094, 389145229826661547202, 5420093847118012782734
Offset: 0
G.f. = 2 + 14*x + 194*x^2 + 2702*x^3 + 37634*x^4 + 524174*x^5 + ...
-
m:=7;; a:=[2,14];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
-
[Floor((2+Sqrt(3))^(2*n)+(1+Sqrt(3))^(-n)): n in [0..19]]; // Vincenzo Librandi, Mar 31 2011
-
a := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(14) fi: 14*a(n-1)-a(n-2): end: for n from 0 to 30 do printf(`%d,`,a(n)) od:
seq( simplify(2*ChebyshevT(n, 7)), n=0..20); # G. C. Greubel, Dec 23 2019
-
a[0]=2; a[1]=14; a[n_]:= 14a[n-1] -a[n-2]; Table[a[n], {n,0,20}] (* Robert G. Wilson v, Jan 30 2004 *)
2*ChebyshevT[Range[21] -1, 7] (* G. C. Greubel, Dec 23 2019 *)
-
vector( 21, n, 2*polchebyshev(n-1, 1, 7) ) \\ G. C. Greubel, Dec 23 2019
-
[lucas_number2(n,14,1) for n in range(0,20)] # Zerinvary Lajos, Jun 26 2008
-
[2*chebyshev_T(n,7) for n in (0..20)] # G. C. Greubel, Dec 23 2019
A006051
Square hex numbers.
Original entry on oeis.org
1, 169, 32761, 6355441, 1232922769, 239180661721, 46399815451081, 9001325016847969, 1746210653453054881, 338755865444875798921, 65716891685652451935769, 12748738231151130799740241, 2473189499951633722697670961, 479786014252385791072548426169
Offset: 1
G.f. = x + 169*x^2 + 32761*x^3 + 6355441*x^4 + 1232922769*x^5 + ...
- M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 19.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 1..435
- M. Gardner & N. J. A. Sloane, Correspondence, 1973-74
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Sociedad Magic Penny Patagonia, Leonardo en Patagonia
- Eric Weisstein's World of Mathematics, Hex Number.
- Index entries for linear recurrences with constant coefficients, signature (195,-195,1).
-
[(7*Evaluate(ChebyshevSecond(n),97) - 7*Evaluate(ChebyshevU(n-1), 97) + 1)/8: n in [1..30]]; // G. C. Greubel, Nov 04 2017; Oct 07 2022
-
Rest@ CoefficientList[Series[x(1-26x+x^2)/((1-x)(1-194x+x^2)), {x,0,20}], x] (* Michael De Vlieger, Jan 02 2017 *)
LinearRecurrence[{195,-195,1},{1,169,32761},20] (* Harvey P. Dale, Nov 03 2017 *)
-
{a(n) = sqr( real( (2 + quadgen( 12)) ^ (2*n - 1)) / 2)} /* Michael Somos, Feb 15 2011 */
-
def A006051(n): return (7*chebyshev_U(n-1,97) - 7*chebyshev_U(n-2,97) + 1)/8
[A006051(n) for n in range(1,31)] # G. C. Greubel, Oct 07 2022
A087799
a(n) = 10*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 10.
Original entry on oeis.org
2, 10, 98, 970, 9602, 95050, 940898, 9313930, 92198402, 912670090, 9034502498, 89432354890, 885289046402, 8763458109130, 86749292044898, 858729462339850, 8500545331353602, 84146723851196170, 832966693180608098, 8245520207954884810
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 11 2003
a(4) = 9602 = 10*a(3) - a(2) = 10*970 - 98 = (5+sqrt(24))^4 + (5-sqrt(24))^4.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Tanya Khovanova, Recursive Sequences
- Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)
- Index entries for linear recurrences with constant coefficients, signature (10,-1).
-
I:=[2,10]; [n le 2 select I[n] else 10*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 07 2018
-
a[0] = 2; a[1] = 10; a[n_] := 10a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* Robert G. Wilson v, Jan 30 2004 *)
LinearRecurrence[{10,-1}, {2,10}, 30] (* G. C. Greubel, Nov 07 2018 *)
-
polsym(x^2 - 10*x + 1,20) \\ Charles R Greathouse IV, Jun 11 2011
-
{a(n) = 2 * real( (5 + 2 * quadgen(24))^n )}; /* Michael Somos, Feb 25 2014 */
-
[lucas_number2(n,10,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
A082840
a(n) = 4*a(n-1) - a(n-2) + 3, with a(0) = -1, a(1) = 1.
Original entry on oeis.org
-1, 1, 8, 34, 131, 493, 1844, 6886, 25703, 95929, 358016, 1336138, 4986539, 18610021, 69453548, 259204174, 967363151, 3610248433, 13473630584, 50284273906, 187663465043, 700369586269, 2613814880036, 9754889933878, 36405744855479, 135868089488041
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Apr 14 2003
-
a:=[-1,1,8];; for n in [4..30] do a[n]:=5*a[n-1]-5*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Feb 25 2019
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( -(1-6*x+2*x^2)/((1-x)*(1-4*x+x^2)) )); // G. C. Greubel, Feb 25 2019
-
CoefficientList[Series[(-1+6x-2x^2)/((1-x)(1-4x+x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 15 2014 *)
LinearRecurrence[{5,-5,1}, {-1,1,8}, 30] (* G. C. Greubel, Feb 25 2019 *)
-
is(n)=ispolygonal(3/2*n*(n+1)+4,3) || n==-1 \\ Charles R Greathouse IV, Apr 14 2014
-
my(x='x+O('x^30)); Vec(-(1-6*x+2*x^2)/((1-x)*(1-4*x+x^2))) \\ G. C. Greubel, Feb 25 2019
-
(-(1-6*x+2*x^2)/((1-x)*(1-4*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
A334277
Perimeters of almost-equilateral Heronian triangles.
Original entry on oeis.org
12, 42, 156, 582, 2172, 8106, 30252, 112902, 421356, 1572522, 5868732, 21902406, 81740892, 305061162, 1138503756, 4248953862, 15857311692, 59180292906, 220863859932, 824275146822, 3076236727356, 11480671762602, 42846450323052, 159905129529606, 596774067795372, 2227191141651882
Offset: 1
a(1) = 12; there is one Heronian triangle with perimeter 12 whose side lengths are consecutive integers, [3,4,5].
a(2) = 42; there is one Heronian triangle with perimeter 42 whose side lengths are consecutive integers, [13,14,15].
Cf.
A011945 (areas), this sequence (perimeters).
A335025
Largest side lengths of almost-equilateral Heronian triangles.
Original entry on oeis.org
5, 15, 53, 195, 725, 2703, 10085, 37635, 140453, 524175, 1956245, 7300803, 27246965, 101687055, 379501253, 1416317955, 5285770565, 19726764303, 73621286645, 274758382275, 1025412242453, 3826890587535, 14282150107685, 53301709843203, 198924689265125, 742397047217295, 2770663499604053
Offset: 1
a(1) = 5; there is one Heronian triangle with perimeter 12 whose side lengths are consecutive integers, [3,4,5] and 5 is the largest side length.
a(2) = 15; there is one Heronian triangle with perimeter 42 whose side lengths are consecutive integers, [13,14,15] and 15 is the largest side length.
Cf.
A003500 (middle side lengths),
A016064 (smallest side lengths), this sequence (largest side lengths).
A236330
Positive integers n such that x^2 - 14xy + y^2 + n = 0 has integer solutions.
Original entry on oeis.org
32, 48, 128, 176, 192, 288, 368, 416, 432, 512, 624, 704, 752, 768, 800, 944, 1056, 1136, 1152, 1184, 1200, 1328, 1472, 1568, 1584, 1664, 1712, 1728, 1776, 1952, 2048, 2096, 2208, 2288, 2336, 2352, 2496, 2592, 2672, 2816, 2864, 2928, 3008, 3056, 3072, 3104
Offset: 1
48 is in the sequence because x^2 - 14xy + y^2 + 48 = 0 has integer solutions, for example (x, y) = (2, 26).
A296795
Numbers k such that m = 2*k is the middle side in a Heronian triangle with sides m - 11, m, m + 11.
Original entry on oeis.org
13, 14, 22, 38, 43, 77, 139, 158, 286, 518, 589, 1067, 1933, 2198, 3982, 7214, 8203, 14861, 26923, 30614, 55462, 100478, 114253, 206987, 374989, 426398, 772486, 1399478, 1591339, 2882957, 5222923, 5938958, 10759342, 19492214, 22164493, 40154411, 72745933
Offset: 0
The smallest triangle of this type has following sides: 15, 26, 37 has the altitude 12 and is a part of the Pythagorean triangle with sides : 12, 35, 37.
-
CoefficientList[Series[(13 + 14 x + 22 x^2 - 14 x^3 - 13 x^4 - 11 x^5)/(1 - 4 x^3 + x^6), {x, 0, 36}], x] (* Michael De Vlieger, Dec 22 2017 *)
-
Vec((13 + 14*x + 22*x^2 - 14*x^3 - 13*x^4 - 11*x^5) / (1 - 4*x^3 + x^6) + O(x^40)) \\ Colin Barker, Dec 22 2017
Comments