cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 176 results. Next

A001662 Coefficients of Airey's converging factor.

Original entry on oeis.org

0, 1, 1, -1, -1, 13, -47, -73, 2447, -16811, -15551, 1726511, -18994849, 10979677, 2983409137, -48421103257, 135002366063, 10125320047141, -232033147779359, 1305952009204319, 58740282660173759, -1862057132555380307, 16905219421196907793, 527257187244811805207
Offset: 0

Views

Author

Keywords

Comments

A051711 times the coefficient in expansion of W(exp(x)) about x=1, where W is the Lambert function. - Paolo Bonzini, Jun 22 2016
The polynomials with coefficients in triangle A008517, evaluated at -1.

Examples

			G.f. = x + x^2 - x^3 - x^4 + 13*x^5 - 47*x^6 - 73*x^7 + 2447*x^8 + ... - _Michael Somos_, Jun 23 2019
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combinat); A001662 := proc(n) add((-1)^k*eulerian2(n-1,k),k=0..n-1) end:
    seq(A001662(i),i=0..23); # Peter Luschny, Nov 13 2012
  • Mathematica
    a[0] = 0; a[n_] := Sum[ (n+k-1)! * Sum[ (-1)^j/(k-j)! * Sum[ 1/i! * StirlingS1[n-i+j-1, j-i] / (n-i+j-1)!, {i, 0, j}] * 2^(n-j-1), {j, 0, k}], {k, 0, n-1}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 26 2013, after Vladimir Kruchinin *)
    a[ n_] := If[ n < 1, 0, 2^(n - 1) Sum[ (-2)^-j StirlingS1[n - i + j - 1, j - i] Binomial[n + k - 1, n + j - 1] Binomial[n + j - 1, i], {k, 0, n - 1}, {j, 0, k}, {i, 0, j}]]; (* Michael Somos, Jun 23 2019 *)
    len := 12; gf := (1/2) (LambertW[Exp[x + 1]] - 1);
    ser := Series[gf, { x, 0, len}]; norm := Table[n! 4^n, {n, 0, len}];
    CoefficientList[ser, x] * norm (* Peter Luschny, Jun 24 2019 *)
  • Maxima
    a(n):= if n=0 then 1 else (sum((n+k-1)!*sum(((-1)^(j)/(k-j)!*sum((1/i! *stirling1(n-i+j-1, j-i))/(n-i+j-1)!, i, 0, j))*2^(n-j-1), j, 0, k), k, 0, n-1)); /* Vladimir Kruchinin, Nov 11 2012 */
  • SageMath
    @CachedFunction
    def eulerian2(n, k):
        if k==0: return 1
        elif k==n: return 0
        return eulerian2(n-1, k)*(k+1)+eulerian2(n-1, k-1)*(2*n-k-1)
    def A001662(n): return add((-1)^k*eulerian2(n-1,k) for k in (0..n-1))
    [A001662(m) for m in (0..23)] # Peter Luschny, Nov 13 2012
    

Formula

Let b(n) = 0, 1, -1, 1, 1, -13,.. be the sequence with all signs but one reversed: b(1)=a(1), b(n)=-a(n) for n<>1. Define the e.g.f. B(x) = 2*Sum_{n>=0} b(n)*(x/2)^n/n!. B(x) satisfies exp(B(x)) = 1 + 2*x - B(x). [Bernstein/Sloane S52]
Similarly, c(0)=1, c(n)=-a(n+1) are the alternating row sums of the second-order Eulerian numbers A340556, or c(n) = E2poly(n,-1). - Peter Luschny, Feb 13 2021
a(n) = Sum_{k=0..n-1} (n+k-1)!*Sum_{j=0..k} ((-1)^j/(k-j)!)*Sum_{i=0..j} ((1/i!)*Stirling1(n-i+j-1,j-i)/(n-i+j-1)!)*2^(n-j-1), n > 0, a(0)=1. - Vladimir Kruchinin, Nov 11 2012
From Sergei N. Gladkovskii, Nov 24 2012, Aug 22 2013: (Start)
Continued fractions:
G.f.: 2*x - x/G(0) where G(k) = 1 - 2*x*k + x*(k+1)/G(k+1).
G.f.: 2*x - 2*x/U(0) where U(k) = 1 + 1/(1 - 4*x*(k+1)/U(k+1)).
G.f.: A(x) = x/G(0) where G(k) = 1 - 2*x*(k+1) + x*(k+1)/G(k+1).
G.f.: 2*x - x*W(0) where W(k) = 1 + x*(2*k+1)/( x*(2*k+1) + 1/(1 + x*(2*k+2)/( x*(2*k+2) + 1/W(k+1)))). (End)
a(n) = 4^n * Sum_{i=1..n} Stirling2(n,i)*A013703(i)/2^(2*i+1). - Paolo Bonzini, Jun 23 2016
E.g.f.: 1/2*(LambertW(exp(4*x+1))-1). - Vladimir Kruchinin, Feb 18 2018
a(0) = 0; a(1) = 1; a(n) = 2 * a(n-1) - Sum_{k=1..n-1} binomial(n-1,k) * a(k) * a(n-k). - Ilya Gutkovskiy, Aug 28 2020

Extensions

More terms from James Sellers, Dec 07 1999
Reverted to converging factors definition by Paolo Bonzini, Jun 23 2016

A010739 Shifts 2 places left under inverse binomial transform.

Original entry on oeis.org

1, 2, 1, 1, -2, 3, -7, 22, -71, 231, -794, 2945, -11679, 48770, -212823, 969221, -4605674, 22802431, -117322423, 625743878, -3452893503, 19684083947, -115787084242, 701935339725, -4380330298815, 28105726916034, -185229395693615, 1252696143653513
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; (m-> `if`(m<0, 2^n,
          add(a(m-j)*binomial(m, j)*(-1)^j, j=0..m)))(n-2)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Feb 02 2022
  • Mathematica
    a[n_] := a[n] = Function[m, If[m<0, 2^n,
       Sum[a[m-j]*Binomial[m, j]*(-1)^j, {j, 0, m}]]][n-2];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jul 24 2022, after Alois P. Heinz *)

Formula

G.f. A(x) satisfies: A(x) = 1 + 2*x + x^2*A(x/(1 + x))/(1 + x). - Ilya Gutkovskiy, Feb 02 2022

A144018 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where sequence a_k of column k has a_k(0)=0, followed by (k+1)-fold 1 and a_k(n) shifts k places left under Euler transform.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 9, 3, 2, 1, 1, 20, 6, 3, 2, 1, 1, 48, 10, 5, 3, 2, 1, 1, 115, 20, 8, 5, 3, 2, 1, 1, 286, 36, 14, 7, 5, 3, 2, 1, 1, 719, 72, 23, 12, 7, 5, 3, 2, 1, 1, 1842, 137, 40, 18, 11, 7, 5, 3, 2, 1, 1, 4766, 275, 69, 30, 16, 11, 7, 5, 3, 2, 1, 1, 12486, 541, 121, 47, 25, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Alois P. Heinz, Sep 07 2008

Keywords

Examples

			T(5,1) = ([1,2,4]*[1,1,4] + [1]*[1]*4 + [1,2]*[1,1]*2 + [1,3]*[1,2]*1)/4 = 36/4 = 9.
Triangle begins:
    1;
    1,  1;
    2,  1,  1;
    4,  2,  1,  1;
    9,  3,  2,  1, 1;
   20,  6,  3,  2, 1, 1;
   48, 10,  5,  3, 2, 1, 1;
  115, 20,  8,  5, 3, 2, 1, 1;
  286, 36, 14,  7, 5, 3, 2, 1, 1;
  719, 72, 23, 12, 7, 5, 3, 2, 1, 1;
		

Crossrefs

T(2n,n) gives A000041(n).
Cf. A316074.

Programs

  • Maple
    etrk:= proc(p) proc(n, k) option remember; `if`(n=0, 1,
             add(add(d*p(d, k), d=numtheory[divisors](j))*
             procname(n-j, k), j=1..n)/n)
           end end:
    B:= etrk(T):
    T:= (n, k)-> `if`(n<=k, `if`(n=0, 0, 1), B(n-k, k)):
    seq(seq(T(n, k), k=1..n), n=1..14);
  • Mathematica
    etrk[p_] := Module[{f}, f[n_, k_] := f[n, k] = If[n == 0, 1, (Sum[Sum[d*p[d, k], {d, Divisors[j]}]*f[n-j, k], {j, 1, n-1}] + Sum[d*p[d, k], {d, Divisors[n]}])/n]; f]; b = etrk[t]; t[n_, k_] := If[n <= k, If[n == 0, 0, 1], b[n-k, k]]; Table[t[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 01 2013, after Alois P. Heinz *)

A279215 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(k+1)*(2*k+1)/6).

Original entry on oeis.org

1, 1, 6, 20, 65, 190, 571, 1616, 4555, 12439, 33515, 88517, 230738, 592321, 1502384, 3763946, 9328899, 22880511, 55585077, 133806273, 319373068, 756124040, 1776497540, 4143489680, 9597505006, 22083821765, 50494638926, 114758996621, 259303832735, 582655202940, 1302234303910, 2895530963661, 6406348746390
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Euler transform of the square pyramidal numbers (A000330).

Crossrefs

Programs

  • Mathematica
    nmax=32; CoefficientList[Series[Product[1/(1 - x^k)^(k (k + 1) (2 k + 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(k+1)*(2*k+1)/6).
a(n) ~ exp(Zeta'(-1)/6 - Zeta(3)/(8*Pi^2) - Pi^16/(24883200000*Zeta(5)^3) + Pi^8*Zeta(3)/(1728000*Zeta(5)^2) - Zeta(3)^2/(720*Zeta(5)) + Zeta'(-3)/3 + (Pi^12/(43200000*2^(3/5)*Zeta(5)^(11/5)) - Pi^4*Zeta(3) / (3600*2^(3/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8/(144000*2^(1/5)*Zeta(5)^(7/5)) + Zeta(3)/(12*2^(1/5)*Zeta(5)^(2/5))) * n^(2/5) + Pi^4/(180*2^(4/5)*Zeta(5)^(3/5)) * n^(3/5) + 5*Zeta(5)^(1/5)/2^(7/5) * n^(4/5)) * Zeta(5)^(23/225) / (2^(29/150) * sqrt(5*Pi) * n^(271/450)). - Vaclav Kotesovec, Dec 08 2016

A279216 Expansion of Product_{k>=1} 1/(1 - x^k)^(k^2*(k+1)/2).

Original entry on oeis.org

1, 1, 7, 25, 86, 269, 862, 2606, 7812, 22704, 64989, 182356, 504414, 1373694, 3693367, 9804435, 25733084, 66808578, 171719539, 437183839, 1103143657, 2760037810, 6850400668, 16873338215, 41260373472, 100196920196, 241712863504, 579416535973, 1380517695672, 3270075208145, 7702580246941
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Euler transform of the pentagonal pyramidal numbers (A002411).

Crossrefs

Programs

  • Mathematica
    nmax=30; CoefficientList[Series[Product[1/(1 - x^k)^(k^2 (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k^2*(k+1)/2).
a(n) ~ exp(-Zeta(3)/(8*Pi^2) - Pi^16/(83980800000*Zeta(5)^3) + Zeta'(-3)/2 + (Pi^12/(97200000*2^(2/5)*3^(1/5)*Zeta(5)^(11/5))) * n^(1/5) + (-Pi^8/(108000*2^(4/5)*3^(2/5)*Zeta(5)^(7/5))) * n^(2/5) + (Pi^4/(180*2^(1/5)*(3*Zeta(5))^(3/5))) * n^(3/5) + ((5*(3*Zeta(5))^(1/5))/(2^(8/5))) * n^(4/5)) * (3*Zeta(5))^(119/1200) / (2^(181/600) * sqrt(5*Pi) * n^(719/1200)). - Vaclav Kotesovec, Dec 08 2016

A279361 Exponential transform of the triangular numbers.

Original entry on oeis.org

1, 1, 4, 16, 80, 471, 3127, 23059, 186468, 1635265, 15422471, 155388399, 1663294756, 18826525771, 224434810797, 2808247979611, 36770685485408, 502505495269521, 7150461569849395, 105723461155720879, 1621191824611307436, 25738508587975433251
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 10 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + x/1! + 4*x^2/2! + 16*x^3/3! + 80*x^4/4! + 471*x^5/5! + 3127*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*j*(j+1)/2*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 11 2016
  • Mathematica
    Range[0, 23]! CoefficientList[Series[Exp[Exp[x] x (x + 2)/2], {x, 0, 23}], x]

Formula

E.g.f.: exp(exp(x)*x*(x+2)/2).

A007460 Shifts left under OR-convolution with itself.

Original entry on oeis.org

1, 1, 2, 7, 20, 58, 174, 519, 1550, 4634, 13884, 41616, 124824, 374390, 1123288, 3369297, 10107324, 30320434, 90961626, 272878138, 818632094, 2455888346, 7367661682, 22102935920, 66308767426, 198926187730, 596778527246, 1790335274112, 5371006016314
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    import Data.Bits ((.|.))
    a007460 n = a007460_list !! n
    a007460_list = 1 : f [1,1] where
       f xs = x : f (x:xs) where
         x = sum $ zipWith (.|.) xs $ tail $ reverse xs :: Integer
    -- Reinhard Zumkeller, Dec 29 2012
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          Bits[Or](a(i), a(n-1-i)), i=0..n-1))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 22 2012, revised, Jun 16 2018
  • Mathematica
    a[0]=1; a[1]=1; a[n_] := a[n] = Sum[BitOr[a[k], a[n-k-1]], {k, 0, n-1}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Sep 07 2012, after Alois P. Heinz *)

Formula

a(n) ~ c * 3^n, where c = 0.23477965293553321256228091184896942343087043274059369777596946751928557... . - Vaclav Kotesovec, Sep 11 2014

A007464 Shifts left under GCD-convolution with itself.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 6, 11, 10, 18, 16, 20, 24, 26, 20, 45, 40, 38, 34, 62, 46, 54, 50, 84, 50, 102, 78, 104, 98, 90, 70, 189, 82, 130, 84, 120, 112, 130, 120, 232, 152, 234, 132, 130, 208, 282, 140, 462, 180, 210, 220, 418, 284, 334, 260, 520, 156, 334, 556
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A178063 (partial sums).

Programs

  • Haskell
    a007464 n = a007464_list !! n
    a007464_list = 1 : 1 : f [1,1] where
       f xs = y : f (y:xs) where y = sum $ zipWith gcd xs $ reverse xs
    -- Reinhard Zumkeller, Jan 21 2014
    
  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, add(igcd(a(i), a(n-1-i)), i=0..n-1))
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Jun 22 2012
  • Mathematica
    a[0]=1; a[1]=1; a[n_] := a[n] = Sum[GCD[a[k], a[n-k-1]], {k, 0, n-1}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Sep 07 2012, after Alois P. Heinz *)
  • PARI
    N=66; v=vector(N);  v[1]=1; for(n=2,N, v[n]=sum(k=1,n-1, gcd(v[k],v[n-k])) ); v  \\ Joerg Arndt, Jun 30 2013
    
  • Python
    from math import gcd
    A007464_list = [1, 1]
    for n in range(1,10**3):
        A007464_list.append(sum(gcd(A007464_list[i],A007464_list[n-i]) for i in range(n+1)))
    # Chai Wah Wu, Dec 26 2014

A007466 Exponential-convolution of natural numbers with themselves.

Original entry on oeis.org

1, 4, 14, 44, 128, 352, 928, 2368, 5888, 14336, 34304, 80896, 188416, 434176, 991232, 2244608, 5046272, 11272192, 25034752, 55312384, 121634816, 266338304, 580911104, 1262485504, 2734686208, 5905580032, 12717129728
Offset: 1

Views

Author

Keywords

Comments

Define a triangle T by T(n,1) = n*(n-1)+1 and T(r,c) = T(r,c-1) + T(r-1,c-1), then a(n) = T(n,n). - J. M. Bergot, Mar 03 2013
From David Callan, Jul 11 2014: (Start)
With offset 0, a(n) is the number of 2 X n 0-1 matrices that do not contain
1 1 0 0
0 0 or 1 1, as a 2 X 2 submatrix,
See Ju and Seo link, Theorem 3.2. (End)
a(n) is the sum of all ways of adding the k-tuples of the terms in the (n-1)-st row of Pascal's triangle A007318. For n=4 take row 3 of A007318: 1,3,3,1, giving (1)+(3)+(3)+(1)=8; (1+3)+(3+3)+(3+1)=14; (1+3+3)+(3+3+1)=14; (1+3+3+1)=8. The sum of these four terms is 8+14+14+8=44. - J. M. Bergot, Jun 17 2017
Binomial transform of A002061. - Jules Beauchamp, Jan 04 2022
a(n+1) is the number of strings of length n defined on {0,1,2,3} that contain at most one 2, at most one 3, and have no restriction on the number of 0s and 1s. For example, for n=2, a(3)=14 since from the 16 strings of length 2 we exclude 22 and 33. - Enrique Navarrete, May 03 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

E.g.f.: (Sum_{n >= 1} n*x^(n-1)/(n-1)!)^2.
a(n) = 2^(n-1)*n + 2^(n-3)*(n-1)*(n-2).
a(n) = Sum_{k=0..(n+2)} C(n+2, k) * floor(k/2)^2. - Paul Barry, Mar 06 2003
E.g.f.: (1+x)^2*exp(2*x). - Vladeta Jovovic, Sep 09 2003
G.f.: x*(1 - 2*x + 2*x^2)/(1-2*x)^3. - Vladimir Kruchinin, Sep 28 2011
E.g.f.: U(0) where U(k)= 1 + 2*x/( 1 - x/(2 + x - 4/( 2 + x*(k+1)/U(k+1)))) ; (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Oct 28 2012
a(n) = A228643(n, n). - Reinhard Zumkeller, Aug 29 2013
a(n) = Sum_{k=0..n-1} A141611(n-1, k). - G. C. Greubel, Sep 22 2024

A007550 Natural numbers exponentiated twice.

Original entry on oeis.org

1, 4, 20, 127, 967, 8549, 85829, 962308, 11895252, 160475855, 2343491207, 36795832297, 617662302441, 11031160457672, 208736299803440, 4169680371133507, 87648971646028515, 1933298000313801349, 44633323736412392093, 1076069422794010119112
Offset: 1

Views

Author

Keywords

Comments

The subsequence of primes (for n = 4, 5, 7) begins: 127, 967, 85829. The subsequence of semiprimes (for n = 2, 6) begins: 4, 8549. - Jonathan Vos Post, Feb 09 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    exptr:= proc(p) local g; g:= proc(n) option remember; p(n) +add(binomial(n-1, k-1) *p(k) *g(n-k), k=1..n-1) end: end: a:= exptr(exptr(n->n)): seq(a(n), n=1..30); # Alois P. Heinz, Oct 07 2008
  • Mathematica
    a[n_] := Sum[k^(n-k)*Binomial[n, k]*BellB[k], {k, 0, n}]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Feb 11 2014, after Olivier Gérard *)

Formula

E.g.f.: exp(G(x) - 1) - 1, where G(x) = exp(x*exp(x)) = e.g.f. for A000248; clarified by Ilya Gutkovskiy, Jun 25 2018
a(n) = sum( k^(n - k) binomial(n,k) bell(k), k = 0..n ). - Olivier Gérard, Oct 24 2007
Previous Showing 31-40 of 176 results. Next