cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 129 results. Next

A303421 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 4, 8, 4, 8, 32, 32, 8, 16, 128, 252, 128, 16, 32, 512, 1985, 1988, 512, 32, 64, 2048, 15647, 30897, 15684, 2048, 64, 128, 8192, 123337, 480953, 480960, 123732, 8192, 128, 256, 32768, 972168, 7486281, 14783632, 7486369, 976132, 32768, 256, 512, 131072
Offset: 1

Views

Author

R. H. Hardin, Apr 23 2018

Keywords

Comments

Table starts
...1......2........4...........8.............16...............32
...2......8.......32.........128............512.............2048
...4.....32......252........1985..........15647...........123337
...8....128.....1988.......30897.........480953..........7486281
..16....512....15684......480960.......14783632........454377792
..32...2048...123732.....7486369......454381369......27575294129
..64...8192...976132...116529645....13965759339....1673515027797
.128..32768..7700788..1813851698...429248347970..101563813268522
.256.131072.60752164.28233652317.13193275586412.6163796529251277

Examples

			Some solutions for n=5 k=4
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..1
..0..1..0..0. .1..1..1..0. .0..1..0..1. .1..0..1..1. .0..0..0..1
..1..1..1..0. .0..0..1..0. .0..1..0..1. .0..0..0..0. .1..0..0..0
..0..0..1..0. .0..1..0..1. .0..0..0..1. .1..1..1..0. .0..1..0..1
..1..0..0..0. .1..1..0..0. .0..1..1..0. .0..0..0..0. .0..0..1..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A004171(n-1).
Row 1 is A000079(n-1).
Row 2 is A004171(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 7*a(n-1) +6*a(n-2) +8*a(n-3)
k=4: a(n) = 14*a(n-1) +21*a(n-2) +54*a(n-3) -23*a(n-4) -18*a(n-5) -20*a(n-6)
k=5: [order 16]
k=6: [order 31]
k=7: [order 58]
Empirical for row n:
n=1: a(n) = 2*a(n-1)
n=2: a(n) = 4*a(n-1)
n=3: a(n) = 7*a(n-1) +4*a(n-2) +21*a(n-3) +18*a(n-4)
n=4: [order 9]
n=5: [order 19]
n=6: [order 44]

A303456 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 4, 8, 4, 8, 32, 32, 8, 16, 128, 232, 128, 16, 32, 512, 1690, 1696, 512, 32, 64, 2048, 12340, 22756, 12408, 2048, 64, 128, 8192, 90112, 306448, 306767, 90800, 8192, 128, 256, 32768, 658204, 4129588, 7626768, 4136339, 664512, 32768, 256, 512, 131072
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Table starts
...1......2........4...........8............16..............32
...2......8.......32.........128...........512............2048
...4.....32......232........1690.........12340...........90112
...8....128.....1696.......22756........306448.........4129588
..16....512....12408......306767.......7626768.......189848373
..32...2048....90800.....4136339.....189837638......8727953509
..64...8192...664512....55781418....4726484016....401405461699
.128..32768..4863312...752277525..117683035940..18461936404456
.256.131072.35593024.10145443043.2930192820802.849140799884830

Examples

			Some solutions for n=5 k=4
..0..0..0..0. .0..0..0..1. .0..0..1..0. .0..0..0..0. .0..0..0..1
..1..1..1..0. .1..1..0..1. .0..1..0..1. .0..1..0..0. .0..0..1..0
..0..0..1..1. .0..1..0..1. .1..0..0..0. .1..1..1..0. .0..0..1..1
..0..1..1..0. .0..1..0..0. .1..1..1..1. .0..1..1..0. .0..0..0..1
..0..0..0..1. .0..0..1..1. .1..1..0..1. .0..0..1..1. .0..0..1..0
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A004171(n-1).
Row 1 is A000079(n-1).
Row 2 is A004171(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 8*a(n-1) -4*a(n-2) -2*a(n-3) -36*a(n-4) -16*a(n-5)
k=4: [order 15]
k=5: [order 47]
Empirical for row n:
n=1: a(n) = 2*a(n-1)
n=2: a(n) = 4*a(n-1)
n=3: a(n) = 8*a(n-1) -40*a(n-3) +20*a(n-4) +8*a(n-5) -3*a(n-6) +32*a(n-7) for n>8
n=4: [order 15] for n>16
n=5: [order 68] for n>69

A303469 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 4, 8, 4, 8, 29, 32, 8, 16, 105, 170, 128, 16, 32, 384, 948, 1033, 512, 32, 64, 1405, 5237, 9110, 6369, 2048, 64, 128, 5135, 29009, 79377, 89371, 39098, 8192, 128, 256, 18766, 160590, 692636, 1243692, 872026, 240109, 32768, 256, 512, 68589, 888993
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2018

Keywords

Comments

Table starts
...1......2.......4.........8..........16............32..............64
...2......8......29.......105.........384..........1405............5135
...4.....32.....170.......948........5237.........29009..........160590
...8....128....1033......9110.......79377........692636.........6051850
..16....512....6369.....89371.....1243692......17247543.......239939422
..32...2048...39098....872026....19374638.....427097893......9459086839
..64...8192..240109...8511918...302023677...10589284528....373571747330
.128..32768.1476141..83188773..4716032889..263136262937..14793218857797
.256.131072.9071642.812770434.73624207904.6538180319944.585806882371397

Examples

			Some solutions for n=5 k=4
..0..1..0..0. .0..0..1..0. .0..0..1..0. .0..0..0..1. .0..0..1..0
..1..1..1..1. .1..0..1..1. .1..1..1..0. .1..0..1..0. .1..0..0..0
..0..0..0..0. .0..1..0..0. .1..1..1..1. .0..0..1..1. .0..1..1..0
..0..1..1..0. .0..1..0..1. .0..0..1..0. .0..0..0..0. .0..1..1..0
..1..0..0..0. .0..0..1..0. .0..0..1..0. .1..1..1..1. .1..1..0..0
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A004171(n-1).
Row 1 is A000079(n-1).
Row 2 is A302266.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 7*a(n-1) -5*a(n-2) +20*a(n-3) -144*a(n-4) +72*a(n-5) for n>6
k=4: [order 20] for n>21
k=5: [order 93] for n>94
Empirical for row n:
n=1: a(n) = 2*a(n-1)
n=2: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4)
n=3: [order 14] for n>15
n=4: [order 49] for n>50

A102900 a(n) = 3*a(n-1) + 4*a(n-2), a(0)=a(1)=1.

Original entry on oeis.org

1, 1, 7, 25, 103, 409, 1639, 6553, 26215, 104857, 419431, 1677721, 6710887, 26843545, 107374183, 429496729, 1717986919, 6871947673, 27487790695, 109951162777, 439804651111, 1759218604441, 7036874417767, 28147497671065
Offset: 0

Views

Author

Paul Barry, Jan 17 2005

Keywords

Comments

Binomial transform of A102901.
Hankel transform is = 1,6,0,0,0,0,0,0,0,0,0,0,... - Philippe Deléham, Nov 02 2008

References

  • Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.

Crossrefs

Cf. A001045, A004171, A046717, A086901, A102901, A247666 (which appears to be the run length transform of this sequence).

Programs

  • Haskell
    a102900 n = a102900_list !! n
    a102900_list = 1 : 1 : zipWith (+)
                   (map (* 4) a102900_list) (map (* 3) $ tail a102900_list)
    -- Reinhard Zumkeller, Feb 13 2015
    
  • Magma
    [n le 2 select 1 else 3*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 28 2015
    
  • Mathematica
    a[n_]:=(MatrixPower[{{2,2},{3,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    LinearRecurrence[{3, 4}, {1, 1}, 30] (* Vincenzo Librandi, Dec 28 2015 *)
  • PARI
    a(n)=([0,1; 4,3]^n*[1;1])[1,1] \\ Charles R Greathouse IV, Mar 28 2016
    
  • SageMath
    A102900=BinaryRecurrenceSequence(3,4,1,1)
    [A102900(n) for n in range(51)] # G. C. Greubel, Dec 09 2022

Formula

G.f.: (1-2*x)/(1-3*x-4*x^2).
a(n) = (2*4^n + 3*(-1)^n)/5.
a(n) = ceiling(4^n/5) + floor(4^n/5) = (ceiling(4^n/5))^2 - (floor(4^n/5))^2.
a(n) + a(n+1) = 2^(2*n+1) = A004171(n).
a(n) = Sum_{k=0..n} binomial(2*n-k, 2*k)*2^k. - Paul Barry, Jan 20 2005
a(n) = upper left term in the 2 X 2 matrix [1,3; 2,2]^n. - Gary W. Adamson, Mar 14 2008
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(8*4^k-3*(-1)^k)/(x*(8*4^k-3*(-1)^k) + (2*4^k+3*(-1)^k)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013
a(n) = 2^(2*n-1) - a(n-1), a(1)=1. - Ben Paul Thurston, Dec 27 2015; corrected by Klaus Purath, Aug 02 2020
From Klaus Purath, Aug 02 2020: (Start)
a(n) = 4*a(n-1) + 3*(-1)^n.
a(n) = 6*4^(n-2) + a(n-2), n>=2. (End)

A103333 Number of closed walks on the graph of the (7,4) Hamming code.

Original entry on oeis.org

1, 3, 24, 192, 1536, 12288, 98304, 786432, 6291456, 50331648, 402653184, 3221225472, 25769803776, 206158430208, 1649267441664, 13194139533312, 105553116266496, 844424930131968, 6755399441055744, 54043195528445952, 432345564227567616
Offset: 0

Views

Author

Paul Barry, Jan 31 2005

Keywords

Comments

Counts closed walks of length 2n at the degree 3 node of the graph of the (7,4) Hamming code. With interpolated zeros, counts paths of length n at this node.
a(n+1) = A157176(A016945(n)). - Reinhard Zumkeller, Feb 24 2009
For n>0: a(n) = A083713(n) - A083713(n-1). - Reinhard Zumkeller, Feb 22 2010

References

  • David J.C. Mackay, Information Theory, Inference and Learning Algorithms, CUP, 2003, p. 19

Crossrefs

Cf. A000302, A004171. - Vincenzo Librandi, Jan 22 2009

Programs

Formula

G.f.: (1-5*x)/(1-8*x);
a(n) = (3*8^n + 5*0^n)/8.
a(n) = 8*a(n-1) for n > 0. - Harvey P. Dale, Mar 02 2012

A365808 Numbers k such that A163511(k) is a square.

Original entry on oeis.org

0, 2, 5, 8, 11, 17, 20, 23, 32, 35, 41, 44, 47, 65, 68, 71, 80, 83, 89, 92, 95, 128, 131, 137, 140, 143, 161, 164, 167, 176, 179, 185, 188, 191, 257, 260, 263, 272, 275, 281, 284, 287, 320, 323, 329, 332, 335, 353, 356, 359, 368, 371, 377, 380, 383, 512, 515, 521, 524, 527, 545, 548, 551, 560, 563, 569, 572, 575
Offset: 1

Views

Author

Antti Karttunen, Oct 01 2023

Keywords

Comments

The sequence is defined inductively as:
(a) it contains 0 and 2,
and
(b) for any nonzero term a(n), (2*a(n)) + 1 and 4*a(n) are also included as terms.
Because the inductive definition guarantees that all terms after 0 are of the form 3k+2 (A016789), and because for any n >= 0, n^2 == 0 or 1 (mod 3), (i.e., squares are in A032766), it follows that there are no squares in this sequence after the initial 0.

Crossrefs

Cf. A000290, A010052, A032766, A163511, A365807 (characteristic function).
Positions of even terms in A365805.
Sequence A243071(n^2), n >= 1, sorted into ascending order.
Subsequences: A004171, A055010, A365809 (odd terms).
Subsequence of A016789 (after the initial 0).

Programs

  • PARI
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    isA365808v2(n) = issquare(A163511(n));
    
  • PARI
    isA365808(n) = if(n<=2, !(n%2), if(n%2, isA365808((n-1)/2), if(n%4, 0, isA365808(n/4))));
    
  • Python
    from itertools import count, islice
    def A365808_gen(): # generator of terms
        return map(lambda n:(3*(n+1)>>2)-1,filter(lambda n:n==1 or (n&3==3 and not '00' in bin(n)),count(1)))
    A365808_list = list(islice(A365808_gen(),20)) # Chai Wah Wu, Feb 12 2025

A166920 a(n) = 2^n - (1 + (-1)^n)/2.

Original entry on oeis.org

0, 2, 3, 8, 15, 32, 63, 128, 255, 512, 1023, 2048, 4095, 8192, 16383, 32768, 65535, 131072, 262143, 524288, 1048575, 2097152, 4194303, 8388608, 16777215, 33554432, 67108863, 134217728, 268435455, 536870912, 1073741823, 2147483648, 4294967295
Offset: 0

Views

Author

Paul Curtz, Oct 23 2009

Keywords

Comments

Partial sums of A014551. The inverse binomial transform yields a sequence 0,2,-1,5,-7,17,...: zero followed by a sign alternating A014551.
The table of a(n) plus higher order differences in successive rows shows A131577 on the main diagonal.
a(n) = 2^n when n is odd and 2^n-1 when n is even. - Wesley Ivan Hurt, Nov 15 2013

Crossrefs

Programs

Formula

G.f.: x*(2-x)/((1-x)*(1-2*x)*(1+x)).
a(n) = 2^n - (1+(-1)^n)/2.
a(2*n) = A024036(n); a(2*n+1) = A004171(n).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
a(n+1) - 2*a(n) = A168361(n).
a(n) = A000225(n+1) - A051049(n) = A014551(n) - A168361(n).
E.g.f.: exp(2*x) - cosh(x). - G. C. Greubel, May 28 2016
a(n) = Sum_{k=1..n+1} Sum_{i=0..n+1} C(n-k,i). - Wesley Ivan Hurt, Sep 22 2017
a(n) = 2*A001045(n) + A000975(n-1) for n>0. - Yuchun Ji, Aug 30 2018

Extensions

Edited and extended by R. J. Mathar, Mar 02 2010

A302010 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 4, 8, 4, 8, 32, 32, 8, 16, 128, 240, 128, 16, 32, 512, 1808, 1808, 512, 32, 64, 2048, 13616, 25808, 13616, 2048, 64, 128, 8192, 102544, 369040, 368144, 102544, 8192, 128, 256, 32768, 772272, 5276816, 9989376, 5251712, 772272, 32768, 256, 512, 131072
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2018

Keywords

Comments

Table starts
...1......2........4...........8............16...............32
...2......8.......32.........128...........512.............2048
...4.....32......240........1808.........13616...........102544
...8....128.....1808.......25808........369040..........5276816
..16....512....13616......368144.......9989376........270990144
..32...2048...102544.....5251712.....270422672......13918667808
..64...8192...772272....74917424....7320574992.....714887543376
.128..32768..5816080..1068722240..198174358400...36717919842624
.256.131072.43801648.15245681888.5364752820144.1885898831169344

Examples

			Some solutions for n=5 k=4
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..0
..1..0..0..1. .1..0..1..0. .0..1..0..1. .1..1..0..0. .0..0..1..0
..0..1..0..0. .0..0..1..1. .1..1..1..0. .0..0..1..0. .0..0..0..1
..1..1..1..1. .1..1..0..0. .0..0..0..0. .0..1..0..0. .1..1..0..1
..0..1..0..1. .0..0..1..0. .0..1..0..0. .1..1..1..0. .0..0..0..0
		

Crossrefs

Column 1 and row 1 are A000079(n-1).
Column 2 and row 2 are A004171(n-1).
Column 3 and row 3 are A301779.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 7*a(n-1) +4*a(n-2)
k=4: a(n) = 13*a(n-1) +18*a(n-2) +a(n-3) -4*a(n-4)
k=5: a(n) = 24*a(n-1) +82*a(n-2) +34*a(n-3) -90*a(n-4) -40*a(n-5) +37*a(n-6)
k=6: [order 10] for n>12
k=7: [order 17] for n>19
Empirical for row n:
n=1: a(n) = 2*a(n-1)
n=2: a(n) = 4*a(n-1)
n=3: a(n) = 7*a(n-1) +4*a(n-2)
n=4: a(n) = 13*a(n-1) +20*a(n-2) -16*a(n-3) -64*a(n-4) for n>6
n=5: [order 12] for n>15
n=6: [order 32] for n>36
n=7: [order 78] for n>83

A054755 Odd powers of primes of the form q = x^2 + 1 (A002496).

Original entry on oeis.org

2, 5, 8, 17, 32, 37, 101, 125, 128, 197, 257, 401, 512, 577, 677, 1297, 1601, 2048, 2917, 3125, 3137, 4357, 4913, 5477, 7057, 8101, 8192, 8837, 12101, 13457, 14401, 15377, 15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901, 30977, 32401
Offset: 1

Views

Author

Labos Elemer, Apr 25 2000

Keywords

Comments

A002496 is a subset; the odd power exponent is 1.
From Bernard Schott, Mar 16 2019: (Start)
The terms of this sequence are exactly the integers with only one prime factor and whose Euler's totient is square, so this sequence is a subsequence of A039770. The primitive terms of this sequence are the primes of the form q = x^2 + 1, which are exactly in A002496.
Additionally, the terms of this sequence also have a square cototient, so this sequence is a subsequence of A063752 and A054754.
If q prime = x^2 + 1, phi(q) = x^2, phi(q^(2k+1)) = (x*q^k)^2, and cototient(q) = 1^2, cototient(q^(2k+1)) = (q^k)^2. (End)

Examples

			a(20) = 3125 = 5^5, q = 5 = 4^2+1 and Phi(3125) = 2500 = 50^2, cototient(3125) = 3125 - Phi(3125) = 625 = 25^2.
		

Crossrefs

Cf. A000010, A051953, A039770, A063752, A054754, A334745 (with 2 distinct prime factors), A306908 (with 3 distinct prime factors).
Subsequences: A002496 (primitive primes: m^2+1), A004171 (2^(2k+1)), A013710 (5^(2k+1)), A013722 (17^(2k+1)), A262786 (37^(2k+1)).

Programs

  • Mathematica
    Select[Range[10^5], And[PrimeNu@ # == 1, IntegerQ@ Sqrt@ EulerPhi@ #] &] (* Michael De Vlieger, Mar 31 2019 *)
  • PARI
    isok(m) = (omega(m)==1) && issquare(eulerphi(m)); \\ Michel Marcus, Mar 16 2019
    
  • PARI
    upto(n) = {my(res = List([2]), q); forstep(i = 2, sqrtint(n), 2, if(isprime(i^2 + 1), listput(res, i^2 + 1) ) ); q = #res; forstep(i = 3, logint(n, 2), 2, for(j = 1, q, c = res[j]^i; if(c <= n, listput(res, c) , next(2) ) ) ); listsort(res); res } \\ David A. Corneth, Mar 17 2019

Formula

A000010(a(n)) = (q^(2k))*(q-1) and A051953(a(n)) = q^(2k), where q = 1 + x^2 and is prime.

A132020 Decimal expansion of Product_{k>=0} (1 - 1/(2*4^k)).

Original entry on oeis.org

4, 1, 9, 4, 2, 2, 4, 4, 1, 7, 9, 5, 1, 0, 7, 5, 9, 7, 7, 0, 9, 9, 5, 6, 1, 0, 7, 7, 0, 2, 9, 7, 4, 2, 5, 2, 2, 3, 3, 9, 5, 3, 2, 3, 4, 3, 9, 2, 6, 6, 6, 7, 4, 9, 0, 8, 0, 4, 4, 9, 9, 1, 6, 6, 3, 1, 7, 7, 2, 0, 5, 0, 8, 7, 2, 7, 0, 9, 1, 9, 3, 9, 1, 0, 0, 2, 3, 2, 4, 5, 4, 7, 4, 2, 3, 8, 1, 9, 5, 5, 0, 2, 8, 5, 8
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Comments

This is the limiting probability that a large random symmetric binary matrix is nonsingular (cf. A086812, A048651). In other words, equals Lim_{n->oo} A086812(n)/A006125(n+1).- H. Tracy Hall, Sep 07 2024

Examples

			0.41942244179510759770995610770297425223395323439266674908044991663177...
		

Crossrefs

Programs

  • Maple
    evalf(1+sum((-1)^n*2^(n*(n-1)/2)/product(2^k-1, k=1..n), n=1..infinity), 120); # Robert FERREOL, Feb 23 2020
  • Mathematica
    RealDigits[ Product[1 - 1/(2*4^i), {i, 0, 175}], 10, 111][[1]] (* Robert G. Wilson v, May 25 2011 *)
    RealDigits[QPochhammer[1/2, 1/4], 10, 105][[1]] (* Jean-François Alcover, Nov 18 2015 *)
  • PARI
    prodinf(k=0,1-1.>>(2*k+1)) \\ Charles R Greathouse IV, Nov 16 2012

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_4(n))} floor(n/4^k)*4^k/n.
Equals lim inf_{n->oo} A132028(n)/n^(1+floor(log_4(n)))*4^((1/2)*(1+floor(log_4(n)))*floor(log_4(n))).
Equals lim inf_{n->oo} A132028(n)/n^(1+floor(log_4(n)))*4^A000217(floor(log_4(n))).
Equals (1/2)*exp(-Sum_{n>0} (4^(-n)*(Sum_{k|n} 1/(k*2^k)))).
Equals lim inf_{n->oo} A132028(n)/A132028(n+1).
Equals Product_{k>0} (1-1/(2^k+1)). - Robert G. Wilson v, May 25 2011
From Robert FERREOL, Feb 23 2020: (Start)
Equals Product_{k>0} (1 + 1/2^k)^(-1) = 2/A081845.
Equals 1 + Sum_{n>=1} (-1)^n*2^(n*(n-1)/2)/((2-1)*(2^2-1)*...*(2^n-1)). (End)
From Peter Bala, Jan 15 2021: (Start)
Constant C = Sum_{n >= 0} 2^n/Product_{k = 1..n} (1 - 4^k).
Faster converging series:
2*C = (1/2)*Sum_{n >= 0} 2^(-n)/Product_{k = 1..n} (1 - 4^k);
(2^4)*C = 7*Sum_{n >= 0} 2^(-3*n)/Product_{k = 1..n} (1 - 4^k);
(2^9)*C = 7*31*Sum_{n >= 0} 2^(-5*n)/Product_{k = 1..n} (1 - 4^k), and so on.
Slower converging series:
C = -Sum_{n >= 0} 2^(3*n)/Product_{k = 1..n} (1 - 4^k);
7*C = Sum_{n >= 0} 2^(5*n)/Product_{k = 1..n} (1 - 4^k);
7*31*C = -Sum_{n >= 0} 2^(7*n)/Product_{k = 1..n} (1 - 4^k), and so on. (End)
Equals Product_{n>=0} (1 - 1/A004171(n)). - Amiram Eldar, May 09 2023

Extensions

Name corrected by Charles R Greathouse IV, Nov 16 2012
Previous Showing 31-40 of 129 results. Next