A303421 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
1, 2, 2, 4, 8, 4, 8, 32, 32, 8, 16, 128, 252, 128, 16, 32, 512, 1985, 1988, 512, 32, 64, 2048, 15647, 30897, 15684, 2048, 64, 128, 8192, 123337, 480953, 480960, 123732, 8192, 128, 256, 32768, 972168, 7486281, 14783632, 7486369, 976132, 32768, 256, 512, 131072
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..1 ..0..1..0..0. .1..1..1..0. .0..1..0..1. .1..0..1..1. .0..0..0..1 ..1..1..1..0. .0..0..1..0. .0..1..0..1. .0..0..0..0. .1..0..0..0 ..0..0..1..0. .0..1..0..1. .0..0..0..1. .1..1..1..0. .0..1..0..1 ..1..0..0..0. .1..1..0..0. .0..1..1..0. .0..0..0..0. .0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..311
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 7*a(n-1) +6*a(n-2) +8*a(n-3)
k=4: a(n) = 14*a(n-1) +21*a(n-2) +54*a(n-3) -23*a(n-4) -18*a(n-5) -20*a(n-6)
k=5: [order 16]
k=6: [order 31]
k=7: [order 58]
Empirical for row n:
n=1: a(n) = 2*a(n-1)
n=2: a(n) = 4*a(n-1)
n=3: a(n) = 7*a(n-1) +4*a(n-2) +21*a(n-3) +18*a(n-4)
n=4: [order 9]
n=5: [order 19]
n=6: [order 44]
Comments