cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 67 results. Next

A004539 Expansion of sqrt(2) in base 2.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Bailey, Borwein, Crandall, & Pomerance prove a general result that the first n terms contain >> sqrt(n) 1's. Vandehey improves this to sqrt(2*n)(1 + o(1)). - Charles R Greathouse IV, Nov 07 2017

Examples

			1.0110101000001001111001...
		

Crossrefs

Cf. A002193 (decimal version), A233836 (run lengths of 0's and 1's).

Programs

  • Haskell
    a004539 n = a004539_list !! (n-1)
    a004539_list = w 2 0 where
       w x r = bit : w (4 * (x - (4 * r + bit) * bit)) (2 * r + bit)
         where bit = head (dropWhile (\b -> (4 * r + b) * b < x) [0..]) - 1
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Mathematica
    N[Sqrt[2], 200]; RealDigits[%, 2]
    RealDigits[Sqrt[2],2,120][[1]] (* Harvey P. Dale, Aug 03 2024 *)
  • PARI
    binary(sqrt(2)) \\ Michel Marcus, Nov 06 2017
    
  • PARI
    a(n) = floor(quadgen(8)<<(n-1))%2; \\ Chittaranjan Pardeshi, Sep 09 2024
  • bc
    obase=2 scale=200 sqrt(2)
    

Formula

a(k) = floor(Sum_{n>=1} A005875(n)/exp(Pi*n/(2^((2/3)*k+(1/3))))) mod 2. Will give the k-th binary digit of sqrt(2). A005875 : number of ways to write n as sum of 3 squares. - Simon Plouffe, Dec 30 2023

A007351 Where prime race 4m-1 vs. 4m+1 is tied.

Original entry on oeis.org

2, 5, 17, 41, 461, 26833, 26849, 26863, 26881, 26893, 26921, 616769, 616793, 616829, 616843, 616871, 617027, 617257, 617363, 617387, 617411, 617447, 617467, 617473, 617509, 617531, 617579, 617681, 617707, 617719, 618437, 618521, 618593, 618637
Offset: 1

Views

Author

Keywords

Comments

Primes p such that the number of primes <= p of the form 4m-1 is equal to the number of primes <= p of the form 4m+1.
Starting from a(27410)=9103362505753 the sequence includes the 8th sign-changing zone predicted by C. Bays et al. The sequence with the first 8 sign-changing zones contains 419467 terms (see a-file) with a(419467)=9543313015351 as its last term. - Sergei D. Shchebetov, Oct 15 2017

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A156749 Sequence showing Chebyshev bias in prime races (mod 4). [From Daniel Forgues, Mar 26 2009]

Programs

  • Mathematica
    Prime@ Position[Fold[Append[#1, #1[[-1]] + If[Mod[#2, 4] == 3, {1, 0}, {0, 1}]] &, {{0, 0}}, Prime@ Range[2, 10^5]], ?(SameQ @@ # &)][[All, 1]] (* _Michael De Vlieger, May 27 2018 *)
  • PARI
    lista(nn) = {nb = 0; forprime(p=2, nn, m = (p % 4); if (m == 1, nb++, if (m == 3, nb--)); if (!nb, print1(p, ", ")););} \\ Michel Marcus, Oct 05 2017
    
  • Python
    from sympy import nextprime; a, p = 0, 2; R = [p]
    while p < 618637:
        p=nextprime(p); a += p%4-2
        if a == 0: R.append(p)
    print(*R, sep = ', ')  # Ya-Ping Lu, Jan 18 2025

Extensions

Corrected and extended by Enoch Haga, Feb 24 2004

A002255 Numbers k such that 7*4^k + 1 is prime.

Original entry on oeis.org

1, 2, 3, 7, 10, 13, 25, 26, 46, 60, 87, 90, 95, 145, 160, 195, 216, 308, 415, 902, 1128, 3307, 6748, 7747, 8348, 11193, 27243, 44033, 47665, 103542, 141517, 280908, 402267, 405615, 745926, 1069956, 1083900, 1457977, 1507881, 1755887
Offset: 1

Views

Author

Keywords

References

  • H. Riesel, Prime numbers and computer methods for factorization, in Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see pp. 381-384.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A032353 (which is the main entry for this sequence) for more terms.

Programs

Extensions

More terms (from A032353) added by Joerg Arndt, Apr 07 2013

A051200 Except for initial term, primes of form "n 3's followed by 1".

Original entry on oeis.org

3, 31, 331, 3331, 33331, 333331, 3333331, 33333331, 333333333333333331, 3333333333333333333333333333333333333331, 33333333333333333333333333333333333333333333333331
Offset: 1

Views

Author

Keywords

Comments

"A remarkable pattern that is entirely accidental and leads nowhere" - M. Gardner, referring to the first 8 terms.
a(2)*a(3)*a(4) = 34179391, a Zeisel number (A051015) with coefficients (10,21).
a(2)*a(3)*a(4)*a(5) = 1139233281421, a Zeisel number with coefficients (10,21).
a(2)*a(3)*..*a(6) = 379741768929343351, a Zeisel number with coefficients (10,21).
a(2)*a(3)*..*a(7) = 1265805010367017001532181, a Zeisel number with coefficients (10,21).
a(2)*a(3)*..*a(8) = 42193497392022209194699696424911, a Zeisel number with coefficients (10,21).
Besides first 3, primes of the form (10^n-7)/3, n>1. See A123568. - Vincenzo Librandi, Aug 06 2010
The integer lengths of the terms of the sequence are 1, 2, 3, 4, 5, 6, 7, 8, 18, 40, 50, 60, 78, 101, 151, 319, 382, etc. - Harvey P. Dale, Dec 01 2018

References

  • Martin Gardner, The Last Recreations, Chapter 12: Strong Laws of Small Primes, Springer-Verlag, 1997, pp. 191-205, especially p. 194.
  • W. Sierpiński, 200 Zadan z Elementarnej Teorii Liczb, Warsaw, 1964; Problem 88 [in English: 200 Problems from the Elementary Theory of Numbers]
  • W. Sierpiński, 250 Problems in Elementary Number Theory. New York: American Elsevier, Warsaw, 1970, pp. 8, 56-57.
  • F. Smarandache, Properties of numbers, University of Craiova, 1973

Crossrefs

Programs

  • Mathematica
    Join[{3},Select[Rest[FromDigits/@Table[PadLeft[{1},n,3], {n,50}]], PrimeQ]]  (* Harvey P. Dale, Apr 20 2011 *)

Formula

Union of 3 and A123568.

Extensions

More terms from James Sellers
Cross reference added by Harvey P. Dale, May 21 2014

A058006 Alternating factorials: 0! - 1! + 2! - ... + (-1)^n n!

Original entry on oeis.org

1, 0, 2, -4, 20, -100, 620, -4420, 35900, -326980, 3301820, -36614980, 442386620, -5784634180, 81393657020, -1226280710980, 19696509177020, -335990918918980, 6066382786809020, -115578717622022980, 2317323290554617020, -48773618881154822980
Offset: 0

Views

Author

Henry Bottomley, Nov 13 2000

Keywords

Comments

From Harry Richman, Aug 13 2024: (Start)
Euler argued this sequence converges to 0.596347... (A073003 = Gompertz's constant); see Lagarias Section 2.5.
This sequence converges in the p-adic topology, for every prime number p. (End)

Examples

			a(5) = 0!-1!+2!-3!+4!-5! = 1-1+2-6+24-120 = -100.
G.f. = 1 + 2*x^2 - 4*x^3 + 20*x^4 - 100*x^5 + 620*x^6 - 4420*x^7 + 35900*x^8 + ...
		

Crossrefs

Cf. A000142, A003422, A005165, A153229 (absolute values), A136580.
Partial sums of A133942.

Programs

  • Haskell
    a058006 n = a058006_list !! n
    a058006_list = scanl1 (+) a133942_list
    -- Reinhard Zumkeller, Mar 02 2014
  • Mathematica
    a[ n_] := Sum[ (-1)^k k!, {k, 0, n}]; (* Michael Somos, Jan 28 2014 *)
  • PARI
    {a(n) = sum(k=0, n, (-1)^k * k!)}; /* Michael Somos, Jan 28 2014 */
    

Formula

a(n) = (-1)^n n! + a(n-1) = A005165(n)(-1)^n + 1.
a(n) = -(n-1)*a(n-1) + n*a(n-2), n>0.
E.g.f.: d/dx ((GAMMA(0,1)-GAMMA(0,1+x))*exp(1+x)). - Max Alekseyev, Jul 05 2010
G.f.: G(0)/(1-x), where G(k)= 1 - (2*k + 1)*x/( 1 - 2*x*(k+1)/(2*x*(k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
0 = a(n)*(-a(n+1) + a(n+3)) + a(n+1)*(2*a(n+1) - 2*a(n+2) -a(n+3)) + a(n+2)*(a(n+2)) if n>=-1. - Michael Somos, Jan 28 2014
a(n) = exp(1)*Gamma(0,1) + (-1)^n*exp(1)*(n+1)!*Gamma(-n-1,1), where Gamma(a,x) is the upper incomplete Gamma function. - Vladimir Reshetnikov, Oct 29 2015

Extensions

Corrections and more information from Michael Somos, Feb 19 2003

A013594 Smallest order of cyclotomic polynomial containing n or -n as a coefficient.

Original entry on oeis.org

0, 105, 385, 1365, 1785, 2805, 3135, 6545, 6545, 10465, 10465, 10465, 10465, 10465, 11305, 11305, 11305, 11305, 11305, 11305, 11305, 15015, 11305, 17255, 17255, 20615, 20615, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565
Offset: 1

Views

Author

Keywords

Comments

This sequence is infinite - see the Lang reference.
An alternative version would start with 1 rather than 0.

Examples

			a(2)=105 because cyclotomic(105) contains "-2" as coefficient, but for n < 105 cyclotomic(n) does not contain 2 or -2.
x^105 - 1 = ( - 1 + x)(1 + x + x^2)(1 + x + x^2 + x^3 + x^4)(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)(1 - x + x^3 - x^4 + x^5 - x^7 + x^8)(1 - x + x^3 - x^4 + x^6 - x^8 + x^9 - x^11 + x^12)(1 - x + x^5 - x^6 + x^7 - x^8 + x^10 - x^11 + x^12 - x^13 + x^14 - x^16 + x^17 - x^18 + x^19 - x^23 + x^24)(1 + x + x^2 - x^5 - x^6 - 2x^7 - x^8 - x^9 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 - x^20 - x^22 - x^24 - x^26 - x^28 + x^31 + x^32 + x^33 + x^34 + x^35 + x^36 - x^39 - x^40 - 2x^41 - x^42 - x^43 + x^46 + x^47 + x^48)
		

References

  • Bateman, C. Pomerance and R. C. Vaughan, Colloq. Math. Soc. Janos Bolyai, 34 (1984), 171-202.
  • S. Lang, Algebra: 3rd edition, Addison-Wesley, 1993, p. 281.
  • Maier, Prog. Math. 85 (Birkhaueser), 1990, 349-366.
  • Maier, Prog. Math. 139 (Birkhaueser) 1996, 633-638.

Crossrefs

Programs

  • Mathematica
    Table[Position[Table[Max[Abs[Flatten[CoefficientList[Transpose[FactorList[x^i - 1]][[1]], x]]]], {i, 1, 10000}], j][[1]], {j, 1, 10}] (* Ian Miller, Feb 25 2008 *)
  • PARI
    nm=6545; m=0; forstep(n=1, nm, 2, if(issquarefree(n), p=polcyclo(n); o=poldegree(p); for(k=0, o, a=abs(polcoeff(p, k)); if(a>m, m=a; print([m, n, factor(n)])))))

Extensions

More terms from Eric W. Weisstein
Further terms from T. D. Noe, Oct 29 2007

A003504 a(0)=a(1)=1; thereafter a(n+1) = (1/n)*Sum_{k=0..n} a(k)^2 (a(n) is not always integral!).

Original entry on oeis.org

1, 1, 2, 3, 5, 10, 28, 154, 3520, 1551880, 267593772160, 7160642690122633501504, 4661345794146064133843098964919305264116096, 1810678717716933442325741630275004084414865420898591223522682022447438928019172629856
Offset: 0

Views

Author

Keywords

Comments

The sequence appears with a different offset in some other sources. - Michael Somos, Apr 02 2006
Also known as Göbel's (or Goebel's) Sequence. Asymptotically, a(n) ~ n*C^(2^n) where C=1.0478... (A115632). A more precise asymptotic formula is given in A116603. - M. F. Hasler, Dec 12 2007
Let s(n) = (n-1)*a(n). By considering the p-adic representation of s(n) for primes p=2,3,...,43, one finds that a(44) is the first nonintegral value in this sequence. Furthermore, for n>44, the valuation of s(n) w.r.t. 43 is -2^(n-44), implying that both s(n) and a(n) are nonintegral. - M. F. Hasler and Max Alekseyev, Mar 03 2009
a(44) is approximately 5.4093*10^178485291567. - Hans Havermann, Nov 14 2017.
The fractional part is simply 24/43 (see page 709 of Guy (1988)).
The more precise asymptotic formula is a(n+1) ~ C^(2^n) * (n + 2 - 1/n + 4/n^2 - 21/n^3 + 138/n^4 - 1091/n^5 + ...). - Michael Somos, Mar 17 2012

Examples

			a(3) = (1 * 2 + 2^2) / 2 = 3 given a(2) = 2.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Sect. E15.
  • Clifford Pickover, A Passion for Mathematics, 2005.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005166, A005167, A097398, A108394, A115632, A116603 (asymptotic formula).

Programs

  • Maple
    a:=2: L:=1,1,a: n:=15: for k to n-2 do a:=a*(a+k)/(k+1): L:=L,a od:L; # Robert FERREOL, Nov 07 2015
  • Mathematica
    a[n_] := a[n] = Sum[a[k]^2, {k, 0, n-1}]/(n-1); a[0] = a[1] = 1; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Feb 06 2013 *)
    With[{n = 14}, Nest[Append[#, (#.#)/(Length[#] - 1)] &, {1, 1}, n - 2]] (* Jan Mangaldan, Mar 21 2013 *)
  • PARI
    A003504(n,s=2)=if(n-->0,for(k=1,n-1,s+=(s/k)^2);s/n,1) \\ M. F. Hasler, Dec 12 2007
    
  • Python
    a=2; L=[1,1,a]; n=15
    for k in range(1,n-1):
        a=a*(a+k)//(k+1)
        L.append(a)
    print(L) # Robert FERREOL, Nov 07 2015

Formula

a(n+1) = ((n-1) * a(n) + a(n)^2) / n if n > 1. - Michael Somos, Apr 02 2006
0 = a(n)*(+a(n)*(a(n+1) - a(n+2)) - a(n+1) - a(n+1)^2) +a(n+1)*(a(n+1)^2 - a(n+2)) if n>1. - Michael Somos, Jul 25 2016

Extensions

a(0)..a(43) are integral, but from a(44) onwards every term is nonintegral - H. W. Lenstra, Jr.
Corrected and extended by M. F. Hasler, Dec 12 2007
Further corrections from Max Alekseyev, Mar 04 2009

A001521 a(1) = 1; thereafter a(n+1) = floor(sqrt(2*a(n)*(a(n)+1))).

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 13, 19, 27, 38, 54, 77, 109, 154, 218, 309, 437, 618, 874, 1236, 1748, 2472, 3496, 4944, 6992, 9888, 13984, 19777, 27969, 39554, 55938, 79108, 111876, 158217, 223753, 316435, 447507, 632871, 895015, 1265743, 1790031, 2531486, 3580062, 5062972
Offset: 1

Views

Author

Keywords

Comments

Graham and Pollak give an elementary proof of the following result: For given m, define a(n) by a(1) = m and a(n+1) = floor(sqrt(2*a_n*(a_n + 1))), n >= 1. Then a(n) = tau_m(2^((n-1)/2) + 2^((n-2)/2)) where tau_m is the m-th smallest element of {1, 2, 3, ... } union { sqrt(2), 2*sqrt(2), 3*sqrt(2), ... }. For m=1 it follows as a curious corollary that a(2n+1) - 2*a(2n-1) is exactly the n-th bit in the binary expansion of sqrt(2) (A004539).
a(n) is also the curvature (rounded down) of the circle inscribed in the n-th 45-45-90 triangle arranged in a spiral as shown in the illustration in the links section. - Kival Ngaokrajang, Aug 21 2013

References

  • R. L. Graham, D. E. Knuth and O. Pataschnic, Concrete Mathematics, Addison-Wesley, Reading (1994) 2nd Ed., Ex. 3.46.
  • F. K. Hwang, and Shen Lin. "An analysis of Ford and Johnson's sorting algorithm." In Proc. Third Annual Princeton Conf. on Inform. Sci. and Systems, pp. 292-296. 1969.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000196.
First, second, and third differences give A017911, A190660, A241576.

Programs

  • Haskell
    a001521 n = a001521_list !! (n-1)
    a001521_list = 1 : (map a000196 $ zipWith (*)
                        (map (* 2) a001521_list) (map (+ 1) a001521_list))
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Magma
    [Floor(Sqrt(2)^(n-1)+Sqrt(2)^(n-2)): n in [1..45]]; // Vincenzo Librandi, May 24 2015
    
  • Maple
    Digits:=200;
    f:=proc(n) option remember;
    if n=1 then 1 else floor(sqrt(2*f(n-1)*(f(n-1)+1))); fi; end;
    [seq(f(n),n=1..200)];
  • Mathematica
    With[{c=Sqrt[2]},Table[Floor[c^(n-1)+c^(n-2)],{n,1,50}]] (* Harvey P. Dale, May 11 2011 *)
    NestList[Floor[Sqrt[2#(#+1)]]&,1,50] (* Harvey P. Dale, Aug 28 2013 *)
  • PARI
    a(n)=if(n>1, sqrtint(2^(n-1)) + sqrtint(2^(n-2)), 1) \\ Charles R Greathouse IV, Nov 27 2016
    
  • PARI
    first(n)=my(v=vector(n)); v[1]=1; for(k=2,n, v[k]=sqrtint(2*(v[k-1]+1)*v[k-1])); v \\ Charles R Greathouse IV, Jan 23 2020
  • Sage
    [floor(sqrt(2)^(n-1))+ floor(sqrt(2)^(n-2)) for n in (1..50)] # Bruno Berselli, May 25 2015
    

Formula

a(n) = floor( sqrt(2)^(n-1) ) + floor( sqrt(2)^(n-2) ), n>1. - Ralf Stephan, Sep 18 2004
k * sqrt(2)^n - 2 < a(n) < k * sqrt(2)^n, where k = (1 + sqrt(2))/2 = A174968 = 1.2071.... Probably the first inequality can be improved (!). - Charles R Greathouse IV, Jan 23 2020

Extensions

Additional comments from Torsten Sillke, Apr 06 2001

A001272 Numbers k such that k! - (k-1)! + (k-2)! - (k-3)! + ... - (-1)^k*1! is prime.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 10, 15, 19, 41, 59, 61, 105, 160, 661, 2653, 3069, 3943, 4053, 4998, 8275, 9158, 11164, 43592, 59961
Offset: 1

Views

Author

Keywords

Comments

At present the terms greater than or equal to 2653 are only probable primes.
Živković shows that all terms must be less than p = 3612703, which divides the alternating factorial af(k) for k >= p. - T. D. Noe, Jan 25 2008
Notwithstanding Živković's wording, p = 3612703 also divides the alternating factorial for k = 3612702. [Guy: If there is a value of k such that k + 1 divides af(k), then k + 1 will divide af(m) for all m > k.] Therefore af(3612701), approximately 7.3 * 10^22122513, is the final primality candidate. - Hans Havermann, Jun 17 2013
Next term (if it exists) has k > 100000 (per M. Rodenkirch post). - Eric W. Weisstein, Dec 18 2017

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 160, p. 52, Ellipses, Paris 2008.
  • Martin Gardner, Strong Laws of Small Primes, in The Last Recreations, p. 198 (1997).
  • R. K. Guy, Unsolved Problems in Number Theory, B43.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 97.

Crossrefs

Programs

  • Maple
    with(numtheory); f := proc(n) local i; add((-1)^(n-i)*i!,i=1..n); end; isprime(f(15));
  • Mathematica
    (* This program is not convenient for more than 15 terms *) Reap[For[n = 1, n <= 1000, n++, If[PrimeQ[Sum[(-1)^(n - k) * k!, {k, n}]], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Sep 05 2013 *)
    Position[AlternatingFactorial[Range[200]], ?PrimeQ] // Flatten (* _Eric W. Weisstein, Sep 19 2017 *)

Extensions

661 found independently by Eric W. Weisstein and Rachel Lewis (racheljlewis(AT)hotmail.com); 2653 and 3069 found independently by Chris Nash (nashc(AT)lexmark.com) and Rachel Lewis (racheljlewis(AT)hotmail.com)
3943, 4053, 4998 found by Paul Jobling (paul.jobling(AT)whitecross.com)
8275, 9158 found by team of Rachel Lewis, Paul Jobling and Chris Nash
661! - 660! + 659! - ... was shown to be prime by team of Giovanni La Barbera and others using the Certifix program developed by Marcel Martin, Jul 15 2000 (see link) - Paul Jobling (Paul.Jobling(AT)WhiteCross.com) and Giovanni La Barbera, Aug 02 2000
a(23) = 11164 found by Paul Jobling, Nov 25 2004
Edited by T. D. Noe, Oct 30 2008
Edited by Hans Havermann, Jun 17 2013
a(24) = 43592 from Serge Batalov, Jul 19 2017
a(25) = 59961 from Mark Rodenkirch, Sep 18 2017

A071828 Primes of the form Sum_{i=1..k} (-1)^(k-i)*i!.

Original entry on oeis.org

5, 19, 101, 619, 4421, 35899, 3301819, 1226280710981, 115578717622022981, 32656499591185747972776747396512425885838364422981
Offset: 1

Views

Author

Benoit Cloitre, Jun 08 2002

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B43.

Crossrefs

Programs

  • Mathematica
    l = Abs@Accumulate[(-1)^#*#! & /@ Range@99]; l[[Flatten@Position[l, ?PrimeQ]]] (* _Hans Rudolf Widmer, Feb 27 2023 *)
  • PARI
    for(n=1,120,if(isprime(abs(sum(i=1,n,(-1)^i*i!)))==1,print1(abs(sum(i=1,n,(-1)^i*i!)),",")))
    
  • PARI
    v=[];for(n=1,1000, if(ispseudoprime(t=abs(sum(i=1,n,(-1)^i*i!))), v=concat(v,t))); v \\ Charles R Greathouse IV, Feb 14 2011

Formula

a(n) = A005165(A001272(n)).

Extensions

Edited by R. J. Mathar, Aug 28 2007
Previous Showing 31-40 of 67 results. Next