cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 169 results. Next

A002186 Sprague-Grundy values for the game of Kayles (octal games .77 and .771).

Original entry on oeis.org

0, 1, 2, 3, 1, 4, 3, 2, 1, 4, 2, 6, 4, 1, 2, 7, 1, 4, 3, 2, 1, 4, 6, 7, 4, 1, 2, 8, 5, 4, 7, 2, 1, 8, 6, 7, 4, 1, 2, 3, 1, 4, 7, 2, 1, 8, 2, 7, 4, 1, 2, 8, 1, 4, 7, 2, 1, 4, 2, 7, 4, 1, 2, 8, 1, 4, 7, 2, 1, 8, 6, 7, 4, 1, 2, 8, 1, 4, 7, 2, 1, 8, 2, 7, 4, 1, 2, 8, 1, 4, 7, 2, 1, 8, 2, 7, 4, 1, 2, 8, 1, 4, 7, 2, 1
Offset: 0

Views

Author

Keywords

Comments

Octal games 4.4, 4.41, 4.42, 4.43, 4.6, 4.61, 4.62 and 4.63 have values a(n-1).
"The periodicity was first proved by R. K. Guy in 1949, the sequence necessarily being calculated by hand." [Beasley].

References

  • John D. Beasley, The Mathematics of Games, Dover Publ., Mineola, NY 2006, page 111.
  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 91.
  • Calkin, Neil J.; James, Kevin; Janoski, Janine E.; Leggett, Sarah; Richards, Bryce; Sitaraman, Nathan; and Thomas, Stephanie M.; Computing strategies for graphical Nim, in Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 171-185. (See page 174.)
  • J. H. Conway, On Numbers and Games, Second Edition. A K Peters, Ltd, 2001, p. 128.
  • R. K. Guy, "Anyone for Twopins?", in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
  • Guy, R. K. and Smith, C. A. B.; The G-values of various games. Proc. Cambridge Philos. Soc. 52 (1956), 514-526.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

From n=71 on, the sequence is periodic with period 12. The only exceptions are n=0, 3, 6, 9, 11, 15, 18, 21, 22, 28, 34, 39, 57 and 70.

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 08 2001
Edited by Christian G. Bower, Oct 22 2002

A128695 Number of compositions of n with parts in N which avoid the adjacent pattern 111.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 24, 46, 89, 170, 324, 618, 1183, 2260, 4318, 8249, 15765, 30123, 57556, 109973, 210137, 401525, 767216, 1465963, 2801115, 5352275, 10226930, 19541236, 37338699, 71345449, 136324309, 260483548, 497722578, 951030367
Offset: 0

Views

Author

Ralf Stephan, May 08 2007

Keywords

Examples

			From _Gus Wiseman_, Jul 06 2020: (Start)
The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)    (3)    (4)      (5)
           (1,1)  (1,2)  (1,3)    (1,4)
                  (2,1)  (2,2)    (2,3)
                         (3,1)    (3,2)
                         (1,1,2)  (4,1)
                         (1,2,1)  (1,1,3)
                         (2,1,1)  (1,2,2)
                                  (1,3,1)
                                  (2,1,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,2,1)
                                  (1,2,1,1)
(End)
		

Crossrefs

Column k=0 of A232435.
The matching version is A335464.
Contiguously (1,1)-avoiding compositions is A003242.
Contiguously (1,1)-matching compositions are A261983.
Compositions with some part > 2 are A008466
Compositions by number of adjacent equal parts are A106356.
Compositions where each part is adjacent to an equal part are A114901.
Compositions with adjacent parts coprime are A167606.
Compositions with equal parts contiguous are A274174.
Patterns contiguously matched by compositions are A335457.
Patterns contiguously matched by a given partition are A335516.

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, add(`if`(abs(t)<>j,
           b(n-j, j), `if`(t=-j, 0, b(n-j, -j))), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Nov 23 2013
  • Mathematica
    nn=33;CoefficientList[Series[1/(1-Sum[(x^i+x^(2i))/(1+x^i+x^(2i)),{i,1,nn}]),{x,0,nn}],x] (* Geoffrey Critzer, Nov 23 2013 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,x_,x_,_}]&]],{n,13}] (* Gus Wiseman, Jul 06 2020 *)

Formula

G.f.: 1/(1-Sum(i>=1, x^i*(1+x^i)/(1+x^i*(1+x^i)) ) ).
a(n) ~ c * d^n, where d is the root of the equation Sum_{k>=1} 1/(d^k + 1/(1 + d^k)) = 1, d=1.9107639262818041675000243699745706859615884029961947632387839..., c=0.4993008137128378086219448701860326113802027003939127932922782... - Vaclav Kotesovec, May 01 2014, updated Jul 07 2020
For n>=2, a(n) = A091616(n) + A003242(n). - Vaclav Kotesovec, Jul 07 2020

A005252 a(n) = Sum_{k=0..floor(n/4)} binomial(n-2k,2k).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 7, 11, 17, 27, 44, 72, 117, 189, 305, 493, 798, 1292, 2091, 3383, 5473, 8855, 14328, 23184, 37513, 60697, 98209, 158905, 257114, 416020, 673135, 1089155, 1762289, 2851443, 4613732, 7465176, 12078909, 19544085, 31622993
Offset: 0

Views

Author

Keywords

Comments

The Twopins/t sequence (see Guy).
Number of closed walks of length n at a vertex of the graph with adjacency matrix [1,1,0,0;0,0,0,1;1,0,0,0;0,0,1,1]. - Paul Barry, Mar 15 2004
a(n+3) = number of n-bit sequences that avoid both 010 and 0110. Example: for n=3, there are 8 3-bit sequences and only 010 fails to qualify, so a(6)=7. - David Callan, Mar 25 2004
a(n) is the number of length n binary words that have an even number of 0's and every 0 is immediately followed by a 1. a(6) = 7 because we have: 010111, 011011, 011101, 101011, 101101, 110101, 111111. - Geoffrey Critzer, Jan 08 2014
a(n) is the number of vertices of the Fibonacci cube Gamma(n-1) having an even number of ones. The Fibonacci cube Gamma(n) can be defined as the graph whose vertices are the binary strings of length n without two consecutive 1's and in which two vertices are adjacent when their Hamming distance is exactly 1. Example: a(4) = 2; indeed, the Fibonacci cube Gamma(3) has the five vertices 000, 010, 001, 100, 101, two of which have an even number of ones. See the E. Munarini et al. reference, p. 323. - Emeric Deutsch, Jun 28 2015
a(n) is the number of even permutations p of 1,2,...,n such that |p(i)-i| <= 1 for i=1,2,...,n. - Dmitry Efimov, Jan 08 2016
This sequence (prefixed with 0) is an autosequence of the first kind, whose second kind companion is (2 followed by abs(A111734)). - Jean-François Alcover, Oct 30 2017
a(n+1) is the number of n-bit sequences such that 1's appear in groups of three or more. Example: for n = 5, a(6) = 7 because we have 00000, 00111, 01110, 11100, 11110, 01111, 11111. Source: exercise 1.11 in I. Stewart. - João Camarneiro, Dec 23 2024

References

  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 205 of first edition.
  • R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
  • David J. C. MacKay, Information Theory, Inference and Learning Algorithms, CUP, 2003, p. 251.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ian Stewart, Galois theory, CRC Press, Boca Raton, FL, 2015, p. 32.
  • E. L. Tan, On the cycle graph of a graph and inverse cycle graphs, Ph.D. Dissertation, Univ. of Philippines, Diliman, Quezon City, 1987.
  • E. L. Tan, On Fibonacci numbers and cycle graphs, Matimyas Matemaka (Published by the Mathematical Society of the Philippines), 13 (No. 2, 1990), 1-4.

Crossrefs

First differences of A024490.

Programs

  • Haskell
    a005252 n = sum $ map (\x -> a007318 (n - x) x) [0, 2 .. 2 * div n 4]
    -- Reinhard Zumkeller, Jul 05 2013
    
  • Magma
    I:=[1,1,1,1]; [n le 4 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 09 2016
  • Maple
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,X))), X = Sequence(b,card >= 2)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=2..40); # Zerinvary Lajos, Mar 26 2008
  • Mathematica
    Table[Sum[Binomial[n-2k,2k],{k,0,Floor[n/4]}],{n,0,50}] (* or *) LinearRecurrence[{2,-1,0,1},{1,1,1,1},50] (* Harvey P. Dale, Dec 09 2011 *)
    Table[HypergeometricPFQ[{1/4-n/4, 1/2-n/4, 3/4-n/4, -n/4}, {1/2, 1/2-n/2, -n/2}, 16], {n, 0, 38}] (* Jean-François Alcover, Oct 04 2012 *)
  • PARI
    Vec((1-x)/((1-x-x^2)*(1-x+x^2)) + O(x^100)) \\ Altug Alkan, Jan 08 2015
    
  • PARI
    a(n) = fibonacci(n+1)>>1 + (n%6<2); \\ Kevin Ryde, Apr 29 2021
    

Formula

Second differences give sequence shifted twice. - E. L. Tan, Univ. Phillipines.
G.f.: (1-x)/((1-x-x^2)*(1-x+x^2)). Simon Plouffe in his 1992 dissertation.
From Paul Barry, Mar 15 2004: (Start)
a(n) = Fibonacci(n+1)/2 + A010892(n)/2;
a(n) = (((1+sqrt(5))/2)^(n+1)/sqrt(5) - ((1-sqrt(5))/2)^(n+1)/sqrt(5) + cos(Pi*n/3) + sin(Pi*n/3)/sqrt(3))/2. (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-4); a(0) = a(1) = a(2) = a(3) = 1. - Philippe Deléham, May 01 2006
a(n) = A173021(2^(n-1) - 1) for n > 0. - Reinhard Zumkeller, Feb 07 2010
Limit_{n->oo} a(n)/a(n+1) = (sqrt(5) - 1)/2. - Sergei N. Gladkovskii, Jan 05 2014
G.f.: (1 + Q(0)*x^4/2)/(1-x), where Q(k) = 1 + 1/(1 - x*( 4*k + 2 - x + x^3)/( x*( 4*k + 4 - x + x^3) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 07 2014
a(n) = Fibonacci(n+1) + (-1)^(n+1)*A106511(n+2). - Katharine Ahrens, May 05 2019
E.g.f.: exp(x/2)*(15*(cos(sqrt(3)*x/2) + cosh(sqrt(5)*x/2)) + 5*sqrt(3)*sin(sqrt(3)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/30. - Stefano Spezia, Aug 03 2022

Extensions

More terms from (and formula corrected by) James Sellers, Feb 06 2000
Definition revised at the suggestion of Alessandro Orlandi by N. J. A. Sloane, Aug 16 2009

A066982 a(n) = Lucas(n+1) - (n+1).

Original entry on oeis.org

1, 1, 3, 6, 12, 22, 39, 67, 113, 188, 310, 508, 829, 1349, 2191, 3554, 5760, 9330, 15107, 24455, 39581, 64056, 103658, 167736, 271417, 439177, 710619, 1149822, 1860468, 3010318, 4870815, 7881163, 12752009, 20633204, 33385246, 54018484, 87403765, 141422285
Offset: 1

Views

Author

Benoit Cloitre, Jan 27 2002

Keywords

Comments

From Gus Wiseman, Feb 12 2019: (Start)
Also the number of ways to split an (n + 1)-cycle into nonempty connected subgraphs with no singletons. For example, the a(1) = 1 through a(5) = 12 partitions are:
{{12}} {{123}} {{1234}} {{12345}} {{123456}}
{{12}{34}} {{12}{345}} {{12}{3456}}
{{14}{23}} {{123}{45}} {{123}{456}}
{{125}{34}} {{1234}{56}}
{{145}{23}} {{1236}{45}}
{{15}{234}} {{1256}{34}}
{{126}{345}}
{{1456}{23}}
{{156}{234}}
{{16}{2345}}
{{12}{34}{56}}
{{16}{23}{45}}
Also the number of non-singleton subsets of {1, ..., (n + 1)} with no cyclically successive elements (cyclically successive means 1 succeeds n + 1). For example, the a(1) = 1 through a(5) = 12 subsets are:
{} {} {} {} {}
{1,3} {1,3} {1,3}
{2,4} {1,4} {1,4}
{2,4} {1,5}
{2,5} {2,4}
{3,5} {2,5}
{2,6}
{3,5}
{3,6}
{4,6}
{1,3,5}
{2,4,6}
(End)

Crossrefs

Programs

  • GAP
    List([1..40], n-> Lucas(1,-1,n+1)[2] -n-1); # G. C. Greubel, Jul 09 2019
  • Magma
    [Lucas(n+1)-n-1: n in [1..40]]; // G. C. Greubel, Jul 09 2019
    
  • Mathematica
    a[1]=a[2]=1; a[n_]:= a[n] = a[n-1] +a[n-2] +n-2; Table[a[n], {n, 40}]
    LinearRecurrence[{3, -2, -1, 1}, {1, 1, 3, 6}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
    Table[LucasL[n+1]-n-1, {n, 40}] (* Vladimir Reshetnikov, Sep 15 2016 *)
    CoefficientList[Series[(1-2*x+2*x^2)/((1-x)^2*(1-x-x^2)), {x, 0, 40}], x] (* L. Edson Jeffery, Sep 28 2017 *)
  • PARI
    vector(40, n, my(f=fibonacci); f(n+2)+f(n)-n-1) \\ G. C. Greubel, Jul 09 2019
    
  • Sage
    [lucas_number2(n+1,1,-1) -n-1 for n in (1..40)] # G. C. Greubel, Jul 09 2019
    

Formula

a(1) = a(2) = 1, a(n + 2) = a(n + 1) + a(n) + n.
For n > 2, a(n) = floor(phi^(n+1) - (n+1)) + (1-(-1)^n)/2.
From Colin Barker, Jun 30 2012: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: x*(1-2*x+2*x^2)/((1-x)^2*(1-x-x^2)). (End)
a(n) is the sum of the n-th antidiagonal of A352744 (assuming offset 0). - Peter Luschny, Nov 16 2023

Extensions

Corrected and extended by Harvey P. Dale, Feb 08 2002

A060945 Number of compositions (ordered partitions) of n into 1's, 2's and 4's.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 18, 31, 55, 96, 169, 296, 520, 912, 1601, 2809, 4930, 8651, 15182, 26642, 46754, 82047, 143983, 252672, 443409, 778128, 1365520, 2396320, 4205249, 7379697, 12950466, 22726483, 39882198, 69988378, 122821042, 215535903, 378239143, 663763424, 1164823609
Offset: 0

Views

Author

Len Smiley, May 07 2001

Keywords

Comments

Diagonal sums of A038137. - Paul Barry, Oct 24 2005
From Gary W. Adamson, Oct 28 2010: (Start)
INVERT transform of the aerated Fibonacci sequence (1, 0, 1, 0, 2, 0, 3, 0, 5, ...).
a(n) = term (4,4) in the n-th power of the matrix [0,1,0,0; 0,0,1,0; 0,0,0,1; 1,0,1,1]. (End)
Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=3, I={2}. - Vladimir Baltic, Mar 07 2012
Number of compositions of n if the summand 2 is frozen in place or equivalently, if the ordering of the summand 2 does not count. - Gregory L. Simay, Jul 18 2016
a(n) - a(n-2) = number of compositions of n with no 2's = A005251(n+1). - Gregory L. Simay, Jul 18 2016
In general, the number of compositions of n with summand k frozen in place is equal to the number of compositions of n with only summands 1,...,k,2k. - Gregory L. Simay, May 10 2017
In the same way that the sum of any two alternating terms of A006498 produces a term from A000045 (the Fibonacci sequence), so it could be thought of as a "meta-Fibonacci," and the sum of any two alternating terms of A013979 produces a term from A000930 (Narayana’s cows), so it could analogously be called "meta-Narayana’s cows," this sequence embeds (can generate) A000931 (the Padovan sequence), as the odd terms of A000931 are generated by the sum of successive elements (e.g. 1+2=3, 2+3=5, 3+6=9, 6+10=16) and its even terms are generated by the difference of "supersuccessive" (second-order successive or "alternating," separated by a single other term) terms (e.g. 10-3=7, 18-6=12, 31-10=21, 55-18=37) — or, equivalently, adding "supersupersuccessive" terms (separated by 2 other terms, e.g. 1+6=7, 2+10=12, 3+18=21, 6+31=37) — so it could be dubbed the "metaPadovan." - Michael Cohen and Yasuyuki Kachi, Jun 13 2024

Examples

			There are 18=a(6) compositions of 6 with the summand 2 frozen in place: (6), (51), (15), (4[2]), (33), (411), (141), (114), (3[2]1), (1[2]3), ([222]), (3111), (1311), (1131), (1113), ([22]11), ([2]1111), (111111). Equivalently, the position of the summand 2 does not affect the composition count. For example, (321)=(231)=(312) and (123)=(213)=(132).
		

Crossrefs

Cf. A000045 (1's and 2's only), A023359 (all powers of 2)
Same as unsigned version of A077930.
All of A060945, A077930, A181532 are variations of the same sequence. - N. J. A. Sloane, Mar 04 2012

Programs

  • Haskell
    a060945 n = a060945_list !! (n-1)
    a060945_list = 1 : 1 : 2 : 3 : 6 : zipWith (+) a060945_list
       (zipWith (+) (drop 2 a060945_list) (drop 3 a060945_list))
    -- Reinhard Zumkeller, Mar 23 2012
    
  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( 1/(1-x-x^2-x^4) )); // G. C. Greubel, Apr 09 2021
    
  • Maple
    m:= 40; S:= series( 1/(1-x-x^2-x^4), x, m+1);
    seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Apr 09 2021
  • Mathematica
    LinearRecurrence[{1,1,0,1}, {1,1,2,3}, 39] (* or *)
    CoefficientList[Series[1/(1-x-x^2-x^4), {x, 0, 38}], x] (* Michael De Vlieger, May 10 2017 *)
  • PARI
    N=66; my(x='x+O('x^N));
    Vec(1/(1-x-x^2-x^4))
    /* Joerg Arndt, Oct 21 2012 */
    
  • Sage
    def A060945_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-x-x^2-x^4) ).list()
    A060945_list(40) # G. C. Greubel, Apr 09 2021

Formula

a(n) = a(n-1) + a(n-2) + a(n-4).
G.f.: 1 / (1 - x - x^2 - x^4).
a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..n-k} C(i, n-k-i)*C(2*i-n+k, 3*k-2*n+2*i). - Paul Barry, Oct 24 2005
a(2n) = A238236(n), a(2n+1) = A097472(n). - Philippe Deléham, Feb 20 2014
a(n) + a(n+1) = A005314(n+2). - R. J. Mathar, Jun 17 2020

Extensions

a(0) = 1 prepended by Joerg Arndt, Oct 21 2012

A218842 T(n,k)=Unmatched value maps: number of nXk binary arrays indicating the locations of corresponding elements not equal to any horizontal or antidiagonal neighbor in a random 0..1 nXk array.

Original entry on oeis.org

1, 2, 1, 4, 7, 1, 7, 20, 21, 1, 12, 57, 93, 65, 1, 21, 156, 453, 436, 200, 1, 37, 438, 2050, 3617, 2043, 616, 1, 65, 1220, 9516, 26635, 28888, 9573, 1897, 1, 114, 3398, 44129, 201960, 346501, 230726, 44857, 5842, 1, 200, 9468, 204780, 1530846, 4299802
Offset: 1

Views

Author

R. H. Hardin Nov 07 2012

Keywords

Comments

Table starts
.1......2.........4...........7.............12...............21
.1......7........20..........57............156..............438
.1.....21........93.........453...........2050.............9516
.1.....65.......436........3617..........26635...........201960
.1....200......2043.......28888.........346501..........4299802
.1....616......9573......230726........4507281.........91513161
.1...1897.....44857.....1842766.......58634265.......1948262831
.1...5842....210190....14717828......762745363......41475009100
.1..17991....984904...117548611.....9922198586.....882920599454
.1..55405...4615043...938839259...129073371922...18795714385533
.1.170625..21625074..7498337380..1679056577224..400125250527550
.1.525456.101330329.59887849061.21842080049186.8517908622924528

Examples

			Some solutions for n=3 k=4
..0..0..1..0....0..0..1..1....1..0..0..0....1..1..0..0....0..0..1..0
..0..0..0..1....0..0..0..0....0..0..1..0....1..0..0..0....1..0..0..0
..0..0..0..1....0..0..0..1....1..0..0..1....0..1..0..0....1..0..0..0
		

Crossrefs

Row 1 is A005251(n+2)

A219142 T(n,k)=Unchanging value maps: number of nXk binary arrays indicating the locations of corresponding elements unequal to no horizontal, diagonal or antidiagonal neighbor in a random 0..2 nXk array.

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 7, 18, 18, 1, 12, 39, 78, 51, 1, 21, 96, 281, 331, 142, 1, 37, 225, 1072, 1774, 1400, 405, 1, 65, 543, 4033, 10505, 11385, 5949, 1157, 1, 114, 1293, 15255, 59127, 101600, 73136, 25277, 3289, 1, 200, 3096, 57963, 341648, 872437, 989947
Offset: 1

Views

Author

R. H. Hardin Nov 12 2012

Keywords

Comments

Table starts
.1......2........4..........7..........12...........21............37
.1......6.......18.........39..........96..........225...........543
.1.....18.......78........281........1072.........4033.........15255
.1.....51......331.......1774.......10505........59127........341648
.1....142.....1400......11385......101600.......872437.......7640541
.1....405.....5949......73136......989947.....12867295.....170792866
.1...1157....25277.....472638.....9702349....191707377....3862325048
.1...3289...107353....3050285....94937311...2851740545...87205791997
.1...9344...455938...19667721...927766394..42351530487.1964627314453
.1..26580..1936500..126807809..9067631046.628917557052
.1..75621..8224877..817795362.88653591037
.1.215076.34933256.5274346426

Examples

			Some solutions for n=3 k=4
..1..0..0..1....1..1..1..1....1..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....1..0..1..0....1..0..0..1....0..0..0..1....1..0..1..0
..0..0..1..0....1..0..0..0....1..0..0..1....0..0..0..0....1..0..0..0
		

Crossrefs

Row 1 is A005251(n+2)

A189064 T(n,k)=Number of nXk binary arrays without the pattern 0 1 0 antidiagonally or horizontally.

Original entry on oeis.org

2, 4, 4, 7, 16, 8, 12, 49, 64, 16, 21, 144, 316, 256, 32, 37, 441, 1404, 2032, 1024, 64, 65, 1369, 6768, 13452, 13045, 4096, 128, 114, 4225, 33893, 99721, 128628, 83737, 16384, 256, 200, 12996, 167473, 795741, 1492864, 1228512, 537496, 65536, 512, 351, 40000
Offset: 1

Views

Author

R. H. Hardin Apr 16 2011

Keywords

Comments

Table starts
....2.......4.........7..........12............21..............37
....4......16........49.........144...........441............1369
....8......64.......316........1404..........6768...........33893
...16.....256......2032.......13452.........99721..........795741
...32....1024.....13045......128628.......1492864........19468046
...64....4096.....83737.....1228512......22289912.......477128662
..128...16384....537496....11733712.....333124565.....11711612310
..256...65536...3450100...112065936....4978704008....287687887135
..512..262144..22145617..1070316016...74410715409...7067105036501
.1024.1048576.142149013.10222334864.1112149145053.173620295413143

Examples

			Some solutions for 5X3
..1..0..0....0..0..1....1..0..1....0..0..1....0..0..1....1..1..1....1..1..0
..0..0..1....1..1..1....1..0..0....0..0..0....0..0..1....0..0..1....0..1..1
..1..1..1....0..1..1....0..0..1....0..0..0....1..1..0....1..0..0....1..1..1
..1..1..1....1..1..1....0..0..1....0..0..0....1..0..0....0..0..1....0..0..1
..1..0..0....0..0..1....0..1..1....1..0..1....0..0..0....1..1..0....0..1..1
		

Crossrefs

Column 2 is Column 1 squared
Column 3 is A188868
Row 1 is A005251(n+3)
Row 2 is A188501

A189617 T(n,k)=Number of nXk binary arrays without the pattern 0 1 0 diagonally, antidiagonally or horizontally.

Original entry on oeis.org

2, 4, 4, 7, 16, 8, 12, 49, 64, 16, 21, 144, 292, 256, 32, 37, 441, 1164, 1723, 1024, 64, 65, 1369, 5238, 8496, 10327, 4096, 128, 114, 4225, 25046, 50024, 65160, 61996, 16384, 256, 200, 12996, 116100, 357323, 532565, 515560, 371641, 65536, 512, 351, 40000
Offset: 1

Views

Author

R. H. Hardin Apr 24 2011

Keywords

Comments

Table starts
....2.......4........7.........12..........21.............37...............65
....4......16.......49........144.........441...........1369.............4225
....8......64......292.......1164........5238..........25046...........116100
...16.....256.....1723.......8496.......50024.........357323..........2482591
...32....1024....10327......65160......532565........6204967.........68121839
...64....4096....61996.....515560.....6110500......118571483.......2076231513
..128...16384...371641....4075336....69943253.....2239578131......61652076124
..256...65536..2227333...32031600...783072552....41236726541....1785011303305
..512..262144.13350748..251533888..8759983583...764615054191...52081392909734
.1024.1048576.80027347.1976926440.98440457351.14279876468131.1531637258052071

Examples

			Some solutions for 5X3
..1..1..0....0..0..1....1..1..1....1..1..1....1..1..1....0..0..1....0..0..0
..1..0..0....1..1..1....0..0..1....1..0..1....0..0..1....1..0..0....1..0..1
..0..1..1....0..1..1....0..0..1....1..0..1....0..0..1....0..1..1....0..0..0
..1..0..1....1..0..0....0..0..1....1..1..0....0..0..0....1..1..0....1..0..0
..1..0..0....1..0..1....1..0..0....1..1..0....0..0..1....1..1..1....1..0..0
		

Crossrefs

Column 3 is A188748
Row 1 is A005251(n+3)
Row 2 is A188501

A200886 T(n,k) is the number of 0..k arrays x(0..n+1) of n+2 elements without any interior element greater than both neighbors.

Original entry on oeis.org

7, 22, 12, 50, 51, 21, 95, 144, 121, 37, 161, 325, 422, 292, 65, 252, 636, 1121, 1268, 704, 114, 372, 1127, 2507, 3985, 3823, 1691, 200, 525, 1856, 4977, 10213, 14288, 11472, 4059, 351, 715, 2889, 9052, 22736, 42182, 50995, 34350, 9749, 616, 946, 4300, 15393
Offset: 1

Views

Author

R. H. Hardin, Nov 23 2011

Keywords

Comments

T(n,k) is the number of lattice points in k*P where P is a polytope of dimension n+2 in R^(n+2) whose vertices are lattice points, and therefore for each n it is an Ehrhart polynomial of degree n+2. This confirms the empirical formulas for the rows. - Robert Israel, Mar 21 2021

Examples

			Some solutions for n=4, k=3:
  1   2   3   0   0   1   2   3   0   1   2   3   3   1   2   2
  1   2   1   0   1   0   1   0   3   0   2   2   3   0   3   2
  2   2   3   0   2   2   3   2   3   0   3   3   3   1   3   0
  2   0   3   0   3   3   3   3   2   0   3   3   3   1   0   2
  1   1   2   1   3   3   2   3   0   1   3   3   3   1   2   3
  0   2   2   1   3   2   1   0   2   1   2   1   1   3   3   3
Table starts:
....7....22.....50......95......161.......252.......372........525........715
...12....51....144.....325......636......1127......1856.......2889.......4300
...21...121....422....1121.....2507......4977......9052......15393......24817
...37...292...1268....3985....10213.....22736.....45648......84681.....147565
...65...704...3823...14288....42182....105813....235538.....478467.....904111
..114..1691..11472...50995...173606....491533...1215616....2710413....5567530
..200..4059..34350..181336...710976...2269938...6233356...15250675...34054592
..351..9749.102896..644721..2908797..10462235..31868448...85473225..207289059
..616.23422.308419.2294193.11911516..48259083.163014678..479101189.1261310492
.1081.56268.924532.8166441.48807427.222798408.834763824.2688814689.7684922749
		

Crossrefs

Column 1 is A005251(n+5).
Row 1 is A002412(n+1).

Formula

Empirical for columns:
k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
k=2: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -a(n-4) +a(n-5)
k=3: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7)
k=4: a(n) = 5*a(n-1) -10*a(n-2) +20*a(n-3) -15*a(n-4) +21*a(n-5) -7*a(n-6) +8*a(n-7) -a(n-8) +a(n-9)
k=5: a(n) = 6*a(n-1) -15*a(n-2) +35*a(n-3) -35*a(n-4) +56*a(n-5) -28*a(n-6) +36*a(n-7) -9*a(n-8) +10*a(n-9) -a(n-10) +a(n-11)
k=6: a(n) = 7*a(n-1) -21*a(n-2) +56*a(n-3) -70*a(n-4) +126*a(n-5) -84*a(n-6) +120*a(n-7) -45*a(n-8) +55*a(n-9) -11*a(n-10) +12*a(n-11) -a(n-12) +a(n-13)
k=7: a(n) = 8*a(n-1) -28*a(n-2) +84*a(n-3) -126*a(n-4) +252*a(n-5) -210*a(n-6) +330*a(n-7) -165*a(n-8) +220*a(n-9) -66*a(n-10) +78*a(n-11) -13*a(n-12) +14*a(n-13) -a(n-14) +a(n-15)
Empirical for rows:
n=1: a(k) = (2/3)*k^3 + (5/2)*k^2 + (17/6)*k + 1
n=2: a(k) = (1/3)*k^4 + (7/3)*k^3 + (14/3)*k^2 + (11/3)*k + 1
n=3: a(k) = (2/15)*k^5 + (11/6)*k^4 + (35/6)*k^3 + (23/3)*k^2 + (68/15)*k + 1
n=4: a(k) = (2/45)*k^6 + (19/15)*k^5 + (217/36)*k^4 + (71/6)*k^3 + (2057/180)*k^2 + (27/5)*k + 1
n=5: a(k) = (4/315)*k^7 + (7/9)*k^6 + (241/45)*k^5 + (1067/72)*k^4 + (3757/180)*k^3 + (1145/72)*k^2 + (2629/420)*k + 1
n=6: a(k) = (1/315)*k^8 + (134/315)*k^7 + (21/5)*k^6 + (571/36)*k^5 + (1841/60)*k^4 + (6047/180)*k^3 + (26603/1260)*k^2 + (299/42)*k + 1
n=7: a(k) = (2/2835)*k^9 + (131/630)*k^8 + (2803/945)*k^7 + (1349/90)*k^6 + (41449/1080)*k^5 + (20423/360)*k^4 + (1149293/22680)*k^3 + (22741/840)*k^2 + (2011/252)*k + 1
Previous Showing 11-20 of 169 results. Next