cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A005573 Number of walks on cubic lattice (starting from origin and not going below xy plane).

Original entry on oeis.org

1, 5, 26, 139, 758, 4194, 23460, 132339, 751526, 4290838, 24607628, 141648830, 817952188, 4736107172, 27487711752, 159864676803, 931448227590, 5435879858958, 31769632683132, 185918669183370, 1089302293140564
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A026378, second binomial transform of A001700. - Philippe Deléham, Jan 28 2007
The Hankel transform of [1,1,5,26,139,758,...] is [1,4,15,56,209,...](see A001353). - Philippe Deléham, Apr 13 2007

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt((1-2*x)/(1-6*x)) -1)/(2*x) )); // G. C. Greubel, May 02 2019
    
  • Mathematica
    CoefficientList[Series[(Sqrt[(1-2x)/(1-6x)]-1)/(2x),{x,0,20}],x] (* Harvey P. Dale, Jun 24 2011 *)
    a[n_] := 6^n Hypergeometric2F1[1/2, -n, 2, 2/3]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 11 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((sqrt((1-2*x)/(1-6*x)) -1)/(2*x)) \\ G. C. Greubel, May 02 2019
    
  • Sage
    ((sqrt((1-2*x)/(1-6*x)) -1)/(2*x)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019

Formula

From Emeric Deutsch, Jan 09 2003; corrected by Roland Bacher: (Start)
a(n) = Sum_{i=0..n} (-1)^i*6^(n-i)*binomial(n, i)*binomial(2*i, i)/(i+1);
g.f. A(x) satisfies: x(1-6x)A^2 + (1-6x)A - 1 = 0. (End)
From Henry Bottomley, Aug 23 2001: (Start)
a(n) = 6*a(n-1) - A005572(n-1).
a(n) = Sum_{j=0..n} 4^(n-j)*binomial(n, floor(n/2))*binomial(n, j). (End)
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*k+1, k)*2^(n-k).
a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*Catalan(k)*6^(n-k).
D-finite with recurrence (n+1)*a(n) = (8*n+2)*a(n-1)-(12*n-12)*a(n-2). - Vladeta Jovovic, Jul 16 2004
a(n) = Sum_{k=0..n} A052179(n,k). - Philippe Deléham, Jan 28 2007
Conjecture: a(n)= 6^n * hypergeom([1/2,-n],[2], 2/3). - Benjamin Phillabaum, Feb 20 2011
From Paul Barry, Apr 21 2009: (Start)
G.f.: (sqrt((1-2*x)/(1-6*x)) - 1)/(2*x).
G.f.: 1/(1-5*x-x^2/(1-4*x-x^2/(1-4*x-x^2/(1-4*x-x^2/(1-... (continued fraction). (End)
G.f.: 1/(1 - 4*x - x*(1 - 2*x)/(1 - 2*x - x*(1 - 2*x)/(1 - 2*x - x*(1 - 2*x)/(1 - 2*x - x*(1 - 2*x)/(1...(continued fraction). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Jul 02 2010
a(n) ~ 6^(n+1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 05 2012
G.f.: G(0)/(2*x) - 1/(2*x), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1-2*x) - 2*x*(1-2*x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-2*x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
a(n) = 2^n*hypergeom([-n, 3/2], [2], -2). - Peter Luschny, Apr 26 2016
E.g.f.: exp(4*x)*(BesselI(0,2*x) + BesselI(1,2*x)). - Ilya Gutkovskiy, Sep 20 2017

Extensions

More terms from Henry Bottomley, Aug 23 2001

A005564 Number of n-step walks on square lattice in the first quadrant which finish at distance n-3 from the x-axis.

Original entry on oeis.org

6, 20, 45, 84, 140, 216, 315, 440, 594, 780, 1001, 1260, 1560, 1904, 2295, 2736, 3230, 3780, 4389, 5060, 5796, 6600, 7475, 8424, 9450, 10556, 11745, 13020, 14384, 15840, 17391, 19040, 20790, 22644, 24605, 26676, 28860, 31160, 33579, 36120, 38786, 41580, 44505
Offset: 3

Views

Author

Keywords

Comments

The steps are N, S, E or W.
For n>=4, a(n-1)/2 is the coefficient c(n-2) of the m^(n-2) term of P(m,n) = (c(m-1)* m^(n-1) + c(m-2)* m^(n-2) +...+ c(0)* m^0)/((a!)* (a-1)!), the polynomial for the number of partitions of m with exactly n parts. - Gregory L. Simay, Jun 28 2016
2a(n) is the denominator of formula 207 in Jolleys' "Summation of Series." 2/(1*3*4)+3/(2*4*5)+...n terms. Sum_{k = 1..n} (k+1)/(k*(k+2)*(k+3)). This summation has a closed form of 17/36-(6*n^2+21*n+17)/(6*(n+1)*(n+2)*(n+3)). - Gary Detlefs, Mar 15 2018
a(n) is the number of degrees of freedom in a tetrahedral cell for a Nédélec first kind finite element space of order n-2. - Matthew Scroggs, Jan 02 2021

Examples

			The n=4 diagram in Fig. 4 of Guy's paper is:
1
0 4
9 0 6
0 16 0 4
10 0 9 0 1
Adding 16+4 we get a(4)=20.
The a(3) = 6 walks are EEN, ENE, ENW, NEW, NSN, NNS. - _Michael Somos_, Jun 09 2014
G.f. = 6*x^3 + 20*x^4 + 45*x^5 + 84*x^6 + 140*x^7 + 216*x^8 + 315*x^9 + ...
From _Gregory L. Simay_ Jun 28 2016: (Start)
P(m,4) = (m^3 + 3*m^2 + ...)/(3!*4!) with 3 = a(3)/2 = 6/2.
P(m,5) = (m^4 + 10*m^3 + ...)/(4!*5!) with 10 = a(4)/2 = 20/2.
P(m,6) = (m^5 + (45/2)*m^4 +...)/(5!*6!) with 45/2 = a(5)/2.
P(m,7) = (m^6 + 42*m^5 +...)/(6!*7!) with 42 = a(6)/2 = 84/2. (End)
		

References

  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 38.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000217.
First differences of A001701.
Fourth column of A093768.

Programs

  • GAP
    a:=List([0..45],n->(n+1)*Binomial(n+4,2)); # Muniru A Asiru, Feb 15 2018
  • Magma
    I:=[6, 20, 45, 84]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 18 2012
    
  • Maple
    A005564 := proc(n)
            (n-2)*(n)*(n+1)/2 ;
    end proc: seq(A005564(n),n=0..10) ; # R. J. Mathar, Dec 09 2011
  • Mathematica
    Table[(n-2)*Binomial[n+1, 2], {n, 3, 40}]
    LinearRecurrence[{4,-6,4,-1},{6,20,45,84},50] (* Vincenzo Librandi, Jun 18 2012 *)
  • PARI
    a(n)=(n-2)*(n)*(n+1)/2 \\ Charles R Greathouse IV, Dec 12 2011
    

Formula

G.f.: x^3 * ( 6 - 4*x + x^2 ) / ( 1 - x )^4. [Simon Plouffe in his 1992 dissertation]
a(n) = (n-2)*n*(n+1)/2 = (n-2)*A000217(n).
a(n) = Sum_{j = 0..n} ((n+j-1)^2-(n-j+1)^2)/4. - Zerinvary Lajos, Sep 13 2006
a(n) = Sum_{k = 2..n-1} k*n. - Zerinvary Lajos, Jan 29 2008
a(n) = 4*binomial(n+1,2)*binomial(n+1,4)/binomial(n+1,3) = (n-2)*binomial(n+1,2). - Gary Detlefs, Dec 08 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 18 2012
E.g.f.: x - x*(2 - 2*x - x^2)*exp(x)/2. - Ilya Gutkovskiy, Jun 29 2016
a(n) = 6*Sum_{i = 1..n-1} A000217(i) - n*A000217(n). - Bruno Berselli, Jul 03 2018
Sum_{n>=3} 1/a(n) = 5/18. - Amiram Eldar, Oct 07 2020

Extensions

Entry revised by N. J. A. Sloane, Jul 06 2012

A005556 Exponents m_i associated with Weyl group W(E6).

Original entry on oeis.org

1, 4, 5, 7, 8, 11
Offset: 1

Views

Author

Keywords

References

  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 141.

Programs

  • Magma
    Exponents(RootDatum("E6")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006

Extensions

Edited by N. J. A. Sloane, May 13 2008

A005557 Number of walks on square lattice.

Original entry on oeis.org

42, 132, 297, 572, 1001, 1638, 2548, 3808, 5508, 7752, 10659, 14364, 19019, 24794, 31878, 40480, 50830, 63180, 77805, 95004, 115101, 138446, 165416, 196416, 231880, 272272, 318087, 369852, 428127, 493506, 566618, 648128, 738738, 839188, 950257, 1072764
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sixth diagonal of Catalan triangle A033184.
Sixth column of Catalan triangle A009766.

Programs

  • GAP
    List([0..30],n->(n+1)*Binomial(n+10,4)/5); # Muniru A Asiru, Apr 10 2018
    
  • Magma
    [(n+1)*Binomial(n+10, 4)/5: n in [0..40]]; // Vincenzo Librandi, Mar 20 2013
    
  • Maple
    [seq(binomial(n,5)-binomial(n,3),n=9..55)]; # Zerinvary Lajos, Jul 19 2006
    A005557:=(42-120*z+135*z**2-70*z**3+14*z**4)#(z-1)**6; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(14 z^4 - 70 z^3 + 135 z^2 - 120 z + 42)/(z - 1)^6, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{42,132,297,572,1001,1638},40] (* Harvey P. Dale, Feb 22 2024 *)
  • PARI
    a(n)=(n+1)*binomial(n+10,4)/5 \\ Charles R Greathouse IV, Oct 21 2022

Formula

a(n) = A009766(n+5, 5) = (n+1)*binomial(n+10, 4)/5.
G.f.: (42 - 120*x + 135*x^2 - 70*x^3 + 14*x^4)/(1-x)^6; numerator polynomial is N(2;4, x) from A062991.
a(n) = binomial(n+9,5) - binomial(n+9,3). - Zerinvary Lajos, Jul 19 2006
a(n) = A214292(n+9, 4). - Reinhard Zumkeller, Jul 12 2012
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 2509/63504.
Sum_{n>=0} (-1)^n/a(n) = 951395/63504 - 1360*log(2)/63. (End)

Extensions

More terms and formula from Wolfdieter Lang, Sep 04 2001

A005560 Number of walks on square lattice. Column y=2 of A052174.

Original entry on oeis.org

1, 3, 15, 45, 189, 588, 2352, 7560, 29700, 98010, 382239, 1288287, 5010005, 17177160, 66745536, 232092432, 901995588, 3173688180, 12342120700, 43861998180, 170724392916, 611947174608, 2384209771200, 8609646396000, 33577620944400, 122041737663300, 476432168185575
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Binomial(n+3, Ceiling(n/2))*Binomial(n+2, Floor(n/2)) - Binomial(n+3, Ceiling((n-1)/2))*Binomial(n+2, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Apr 03 2017
  • Maple
    wnprime := proc(n,y)
        local k;
        if type(n-y,'even') then
            k := (n-y)/2 ;
            binomial(n+1,k)*(binomial(n,k)-binomial(n,k-1)) ;
        else
            k := (n-y-1)/2 ;
            binomial(n+1,k)*binomial(n,k+1)-binomial(n+1,k+1)*binomial(n,k-1) ;
        end if;
    end proc:
    A005560 := proc(n)
        wnprime(n,2) ;
    end proc:
    seq(A005560(n),n=2..20) ; # R. J. Mathar, Apr 02 2017
  • Mathematica
    Table[Binomial[n+3, Ceiling[n/2]] Binomial[n+2, Floor[n/2]]-Binomial[n+3, Ceiling[(n-1)/2]] Binomial[n+2, Floor[(n-1)/2]], {n, 0, 30}] (* Vincenzo Librandi, Apr 03 2017 *)
  • PARI
    {a(n)=binomial(n+3,ceil(n/2))*binomial(n+2,floor(n/2)) - binomial(n+3,ceil((n-1)/2))*binomial(n+2,floor((n-1)/2))}
    

Formula

a(n) = C(n+3, ceiling(n/2))*C(n+2, floor(n/2)) - C(n+3, ceiling((n-1)/2))*C(n+2, floor((n-1)/2)). - Paul D. Hanna, Apr 16 2004
Conjecture: (n-1)*(n-2)*(2*n+1)*(n+5)*(n+4)*a(n) -4*n*(n+1)*(2*n^2+4*n+19)*a(n-1) -16*n^2*(n-1)*(2*n+3)*(n+1)*a(n-2)=0. - R. J. Mathar, Apr 02 2017

A005559 Number of walks on square lattice. Column y=1 of A052174.

Original entry on oeis.org

1, 2, 8, 20, 75, 210, 784, 2352, 8820, 27720, 104544, 339768, 1288287, 4294290, 16359200, 55621280, 212751396, 734959368, 2821056160, 9873696560, 38013731756, 134510127752, 519227905728, 1854385377600, 7174705330000, 25828939188000, 100136810390400
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Binomial(n+2, Ceiling(n/2))*Binomial(n+1, Floor(n/2)) - Binomial(n+2, Ceiling((n-1)/2))*Binomial(n+1, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Oct 16 2014
  • Maple
    seq(binomial(n+1, ceil((n-1)/2))*binomial(n, floor((n-1)/2)) -binomial(n+1, ceil((n-2)/2))*binomial(n, floor((n-2)/2)), n=1..30); # Robert Israel, Oct 19 2014
  • Mathematica
    Table[Binomial[n+2, Ceiling[n/2]] Binomial[n+1, Floor[n/2]] - Binomial[n+2, Ceiling[(n-1)/2]] Binomial[n+1, Floor[(n-1)/2]], {n, 0, 200}] (* Vincenzo Librandi, Oct 17 2014 *)
  • PARI
    {a(n)=binomial(n+2,ceil(n/2))*binomial(n+1,floor(n/2)) - binomial(n+2,ceil((n-1)/2))*binomial(n+1,floor((n-1)/2))}
    

Formula

a(n) = C(n+1,ceiling((n-1)/2)) *C(n,floor((n-1)/2)) -C(n+1,ceiling((n-2)/2)) *C(n,floor((n-2)/2)). - Paul D. Hanna, Apr 16 2004
G.f.: -(48*x^3-16*x^2-3*x+1)*EllipticK(4*x)/(12*Pi*x^4)+(4*x^2-9*x+1)*EllipticE(4*x)/(12*Pi*x^4)+1/(4*x^3)-1/(2*x^2) (using Maple's convention for elliptic integrals: EllipticE(t) = Integral_{s=0..1} sqrt(1 - s^2*t^2)/sqrt(1-s^2) ds, EllipticK(t) = Integral_{s=0..1} ((1-s^2*t^2)*(1-s^2))^(-1/2) ds). - Robert Israel, Oct 19 2014
Conjecture: -(n-1)*(2*n+1)*(n+4)*(n+3)*a(n) +4*(n+1)*(2*n^2+4*n+9)*a(n-1) +16*n*(n-1)*(2*n+3)*(n+1)*a(n-2)=0. - R. J. Mathar, Apr 02 2017

A005561 Number of walks on square lattice. Column y=3 of A052174.

Original entry on oeis.org

1, 4, 24, 84, 392, 1344, 5760, 19800, 81675, 283140, 1145144, 4008004, 16032016, 56632576, 225059328, 801773856, 3173688180, 11392726800, 44986664800, 162594659920, 641087516256, 2331227331840, 9183622822400, 33577620944400, 132211882468575, 485773975404900
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Binomial(n+4, Ceiling(n/2))*Binomial(n+3, Floor(n/2)) - Binomial(n+4, Ceiling((n-1)/2))*Binomial(n+3, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Apr 03 2017
  • Maple
    wnprime := proc(n,y)
        local k;
        if type(n-y,'even') then
            k := (n-y)/2 ;
            binomial(n+1,k)*(binomial(n,k)-binomial(n,k-1)) ;
        else
            k := (n-y-1)/2 ;
            binomial(n+1,k)*binomial(n,k+1)-binomial(n+1,k+1)*binomial(n,k-1) ;
        end if;
    end proc:
    A005561 := proc(n)
        wnprime(n,3) ;
    end proc:
    seq(A005561(n),n=3..30) ; # R. J. Mathar, Apr 02 2017
  • Mathematica
    Table[Binomial[n+4, Ceiling[n/2]] Binomial[n+3, Floor[n/2]]-Binomial[n+4, Ceiling[(n-1)/2]] Binomial[n+3, Floor[(n-1)/2]], {n, 0, 30}] (* Vincenzo Librandi, Apr 03 2017 *)
  • PARI
    {a(n)=binomial(n+4,ceil(n/2))*binomial(n+3,floor(n/2)) - binomial(n+4,ceil((n-1)/2))*binomial(n+3,floor((n-1)/2))}
    

Formula

a(n) = C(n+4, ceiling(n/2))*C(n+3, floor(n/2)) - C(n+4, ceiling((n-1)/2))*C(n+3, floor((n-1)/2)). - Paul D. Hanna, Apr 16 2004
Conjecture: (n-2)*(n-3)*(2*n+1)*(n+6)*(n+5)*a(n) - 4*n*(n+1)*(2*n^2+4*n+33)*a(n-1) - 16*n^2*(n-1)*(2*n+3)*(n+1)*a(n-2) = 0. - R. J. Mathar, Apr 02 2017

A005562 Number of walks on square lattice. Column y=4 of A052174.

Original entry on oeis.org

1, 5, 35, 140, 720, 2700, 12375, 45375, 196625, 715715, 3006003, 10930920, 45048640, 164105760, 668144880, 2441298600, 9859090500, 36149998500, 145173803500, 534239596880, 2136958387520, 7892175863000, 31479019635375, 116657543354625, 464342770607625, 1726402608669375
Offset: 4

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Binomial(n+5, Ceiling(n/2))*Binomial(n+4, Floor(n/2)) - Binomial(n+5, Ceiling((n-1)/2))*Binomial(n+4, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Apr 03 2017
  • Maple
    wnprime := proc(n,y)
        local k;
        if type(n-y,'even') then
            k := (n-y)/2 ;
            binomial(n+1,k)*(binomial(n,k)-binomial(n,k-1)) ;
        else
            k := (n-y-1)/2 ;
            binomial(n+1,k)*binomial(n,k+1)-binomial(n+1,k+1)*binomial(n,k-1) ;
        end if;
    end proc:
    A005562 := proc(n)
        wnprime(n,4) ;
    end proc:
    seq(A005562(n),n=4..30) ; # R. J. Mathar, Apr 02 2017
  • Mathematica
    Table[Binomial[n+5, Ceiling[n/2]] Binomial[n+4, Floor[n/2]]-Binomial[n+5, Ceiling[(n-1)/2]] Binomial[n+4, Floor[(n-1)/2]], {n, 0, 30}] (* Vincenzo Librandi, Apr 03 2017 *)
  • PARI
    {a(n)=binomial(n+5,ceil(n/2))*binomial(n+4,floor(n/2)) - binomial(n+5,ceil((n-1)/2))*binomial(n+4,floor((n-1)/2))}
    

Formula

a(n) = C(n+5, ceiling(n/2))*C(n+4, floor(n/2)) - C(n+5, ceiling((n-1)/2))*C(n+4, floor((n-1)/2)). - Paul D. Hanna, Apr 16 2004
Conjecture: (n-3)*(n-4)*(2*n+1)*(n+7)*(n+6)*a(n) - 4*n*(n+1)*(2*n^2+4*n+51)*a(n-1) - 16*n^2*(n-1)*(2*n+3)*(n+1)*a(n-2) = 0. - R. J. Mathar, Apr 02 2017

A005565 Number of walks on square lattice.

Original entry on oeis.org

20, 75, 189, 392, 720, 1215, 1925, 2904, 4212, 5915, 8085, 10800, 14144, 18207, 23085, 28880, 35700, 43659, 52877, 63480, 75600, 89375, 104949, 122472, 142100, 163995, 188325, 215264, 244992, 277695, 313565, 352800, 395604, 442187, 492765, 547560, 606800
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    [1/4*(n^4+14*n^3+69*n^2+136*n+80): n in [0..40]]; // Vincenzo Librandi, May 24 2012
  • Maple
    seq(add (k^3-n^2, k =0..n), n=4..28 ); # Zerinvary Lajos, Aug 26 2007
    A005565:=(-20+25*z-14*z**2+3*z**3)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(20-25x+14x^2-3x^3)/(1-x)^5,{x,0,40}],x] (* Vincenzo Librandi, May 24 2012 *)
    LinearRecurrence[{5,-10,10,-5,1},{20,75,189,392,720},40] (* Harvey P. Dale, Dec 04 2020 *)
    Differences[Table[Sum[x^3 - y^2, {x, 0, g}, {y, x, g}], {g, 3, 30}]] (* Horst H. Manninger, Jun 19 2025 *)
  • PARI
    a(n)=(n^4+14*n^3+69*n^2+136*n)/4+20 \\ Charles R Greathouse IV, Nov 22 2011
    

Formula

From Ralf Stephan, Apr 23 2004: (Start)
a(n) = (1/4)*(n^4+14n^3+69n^2+136n+80).
G.f.: (20-25x+14x^2-3x^3)/(1-x)^5. (End)
a(n) = binomial(n+4,2)^2 - binomial(n+4,1)^2. - Gary Detlefs, Nov 22 2011
Using two consecutive triangular numbers t(n) and t(n+1), starting at n=3, compute the determinant of a 2 X 2 matrix with the first row t(n), t(n+1) and the second row t(n+1), 2*t(n+1). This gives (n+1)^2*(n-2)*(n+2)/4 = a(n-3). - J. M. Bergot, May 17 2012
E.g.f.: exp(x)*(80 + 220*x + 118*x^2 + 20*x^3 + x^4)/4. - Stefano Spezia, Jun 20 2025

A090749 a(n) = 12 * C(2n+1,n-5) / (n+7).

Original entry on oeis.org

1, 12, 90, 544, 2907, 14364, 67298, 303600, 1332045, 5722860, 24192090, 100975680, 417225900, 1709984304, 6962078952, 28192122176, 113649492522, 456442180920, 1827459250276, 7297426411968, 29075683360185, 115631433392020, 459124809056550, 1820529677650320, 7210477496434485
Offset: 5

Views

Author

Philippe Deléham, Feb 15 2004

Keywords

Comments

Also a diagonal of A059365 and A009766. See also A000108, A002057, A003517, A003518, A003519.
Number of standard tableaux of shape (n+6,n-5). - Emeric Deutsch, May 30 2004

Crossrefs

Programs

  • Mathematica
    Table[12*Binomial[2*n + 1, n - 5]/(n + 7), {n,5,50}] (* G. C. Greubel, Feb 07 2017 *)
  • PARI
    for(n=5,50, print1(12*binomial(2*n+1,n-5)/(n+7), ", ")) \\ G. C. Greubel, Feb 07 2017

Formula

a(n) = A039598(n, 5) = A033184(n+7, 12).
G.f.: x^5*C(x)^12 with C(x) g.f. of A000108(Catalan).
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=11, a(n-6)=(-1)^(n-11)*coeff(charpoly(A,x),x^11). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n,n-6) for n > 5. - Reinhard Zumkeller, Jul 12 2012
From Karol A. Penson, Nov 21 2016: (Start)
O.g.f.: z^5 * 4^6/(1+sqrt(1-4*z))^12.
Recurrence: (-4*(n-5)^2-58*n+80)*a(n+1)-(-n^2-6*n+27)*a(n+2)=0, a(0),a(1),a(2),a(3),a(4)=0,a(5)=1,a(6)=12, n>=5.
Asymptotics: (-903+24*n)*4^n*sqrt(1/n)/(sqrt(Pi)*n^2).
Integral representation as n-th moment of a signed function W(x) on x=(0,4),in Maple notation: a(n+5)=int(x^n*W(x),x=0..4),n=0,1,..., where W(x)=(256/231)*sqrt(4-x)*JacobiP(5, 1/2, 1/2, (1/2)*x-1)*x^(11/2)/Pi and JacobiP are Jacobi polynomials. Note that W(0)=W(4)=0. (End).
From Ilya Gutkovskiy, Nov 21 2016: (Start)
E.g.f.: 6*exp(2*x)*BesselI(6,2*x)/x.
a(n) ~ 3*2^(2*n+3)/(sqrt(Pi)*n^(3/2)). (End)
From Amiram Eldar, Sep 26 2022: (Start)
Sum_{n>=5} 1/a(n) = 88699/15120 - 71*Pi/(27*sqrt(3)).
Sum_{n>=5} (-1)^(n+1)/a(n) = 102638*log(phi)/(75*sqrt(5)) - 22194839/75600, where phi is the golden ratio (A001622). (End)

Extensions

Missing term 113649492522 inserted by Ilya Gutkovskiy, Dec 07 2016
Previous Showing 11-20 of 24 results. Next