cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 106 results. Next

A057335 a(0) = 1, and for n > 0, a(n) = A000040(A000120(n)) * a(floor(n/2)); essentially sequence A055932 generated using A000120, hence sorted by number of factors.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 18, 30, 16, 24, 36, 60, 54, 90, 150, 210, 32, 48, 72, 120, 108, 180, 300, 420, 162, 270, 450, 630, 750, 1050, 1470, 2310, 64, 96, 144, 240, 216, 360, 600, 840, 324, 540, 900, 1260, 1500, 2100, 2940, 4620, 486, 810, 1350, 1890, 2250, 3150, 4410
Offset: 0

Views

Author

Alford Arnold, Aug 27 2000

Keywords

Comments

Note that for n>0 the prime divisors of a(n) are consecutive primes starting with 2. All of the least prime signatures (A025487) are included; with the other values forming A056808.
Using the formula, terms of b(n)= a(n)/A057334(n) are: 1, 1, 2, 2, 4, 4, 6, 6, 8, ..., indeed a(n) repeated. - Michel Marcus, Feb 09 2014
a(n) is the unique normal number whose unsorted prime signature is the k-th composition in standard order (graded reverse-lexicographic). This composition (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. A number is normal if its prime indices cover an initial interval of positive integers. Unsorted prime signature is the sequence of exponents in a number's prime factorization. - Gus Wiseman, Apr 19 2020

Examples

			From _Gus Wiseman_, Apr 19 2020: (Start)
The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      4: {1,1}
      6: {1,2}
      8: {1,1,1}
     12: {1,1,2}
     18: {1,2,2}
     30: {1,2,3}
     16: {1,1,1,1}
     24: {1,1,1,2}
     36: {1,1,2,2}
     60: {1,1,2,3}
     54: {1,2,2,2}
     90: {1,2,2,3}
    150: {1,2,3,3}
    210: {1,2,3,4}
     32: {1,1,1,1,1}
     48: {1,1,1,1,2}
For example, the 27th composition in standard order is (1,2,1,1), and the normal number with prime signature (1,2,1,1) is 630 = 2*3*3*5*7, so a(27) = 630.
(End)
		

Crossrefs

Cf. A324939.
Unsorted prime signature is A124010.
Numbers whose prime signature is aperiodic are A329139.
The reversed version is A334031.
A partial inverse is A334032.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Aperiodic compositions are A328594.
- Normal compositions are A333217.
- Permutations are A333218.
- Heinz number is A333219.
Related to A019565 via A122111 and to A000079 via A336321.

Programs

  • Mathematica
    Table[Times @@ Map[If[# == 0, 1, Prime@ #] &, Accumulate@ IntegerDigits[n, 2]], {n, 0, 54}] (* Michael De Vlieger, May 23 2017 *)
  • PARI
    mg(n) = if (n==0, 1, prime(hammingweight(n))); \\ A057334
    lista(nn) = {my(v = vector(nn)); v[1] = 1; for (i=2, nn, v[i] = mg(i-1)*v[(i+1)\2];); v;} \\ Michel Marcus, Feb 09 2014
    
  • PARI
    A057335(n) = if(0==n,1,prime(hammingweight(n))*A057335(n\2)); \\ Antti Karttunen, Jul 20 2020

Formula

a(n) = A057334(n) * a (repeated).
A334032(a(n)) = n; a(A334032(n)) = A071364(n). - Gus Wiseman, Apr 19 2020
a(n) = A122111(A019565(n)); A019565(n) = A122111(a(n)). - Peter Munn, Jul 18 2020
a(n) = A336321(2^n). - Peter Munn, Mar 04 2022
Sum_{n>=0} 1/a(n) = Sum_{n>=0} 1/A005867(n) = 2.648101... (A345974). - Amiram Eldar, Jun 26 2025

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
New primary name from Antti Karttunen, Jul 20 2020

A060753 Denominator of 1*2*4*6*...*(prime(n-1)-1) / (2*3*5*7*...*prime(n-1)).

Original entry on oeis.org

1, 2, 3, 15, 35, 77, 1001, 17017, 323323, 676039, 2800733, 86822723, 3212440751, 131710070791, 5663533044013, 11573306655157, 47183480978717, 95993978542907, 5855632691117327, 392327390304860909
Offset: 1

Views

Author

Frank Ellermann, Apr 23 2001

Keywords

Comments

Equivalently, numerator of Product_{k=1..n-1} prime(k)/(prime(k)-1) (cf. A038110). - N. J. A. Sloane, Apr 17 2015
a(n)/A038110(n) is the supremum of the abundancy index sigma(k)/k = A000203(k)/k of the prime(n-1)-smooth numbers, for n>1 (Laatsch, 1986). - Amiram Eldar, Oct 26 2021
From Amiram Eldar, Jul 10 2022: (Start)
a(n)/A038110(n) is the sum of the reciprocals of the prime(n-1)-smooth numbers, for n>1.
a(n)/A038110(n) is the asymptotic mean of the number of prime(n-1)-smooth divisors of the positive integers, for n>1 (cf. A001511, A072078, A355583). (End)

Examples

			A038110(50)/ a(50) = 0.1020..., exp(-gamma)/log(229) = 0.1033...
1*2*4/(2*3*5) = 4/15 has denominator a(4) = 15. - _Jonathan Sondow_, Jan 31 2014
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 429.

Crossrefs

Programs

  • Magma
    [1] cat [Denominator((&*[NthPrime(k-1)-1:k in [2..n]])/(&*[NthPrime(k-1):k in [2..n]])):n in [2..20]]; // Marius A. Burtea, Sep 19 2019
  • Mathematica
    Table[Denominator@ Product[EulerPhi@ Prime[i]/Prime@ i, {i, n}], {n, 0, 19}] (* Michael De Vlieger, Jan 10 2015 *)
    {1}~Join~Denominator@ FoldList[Times, Table[EulerPhi@ Prime[n]/Prime@ n, {n, 19}]] (* Michael De Vlieger, Jul 26 2016 *)
    b[0] := 0; b[n_] := b[n - 1] + (1 - b[n - 1]) / Prime[n]
    Denominator@ Table[b[n], {n, 0, 20}] (* Fred Daniel Kline, Jun 27 2017 *)
    Join[{1},Denominator[With[{nn=20},FoldList[Times,Prime[Range[nn]]-1]/FoldList[ Times,Prime[Range[nn]]]]]] (* Harvey P. Dale, Apr 17 2022 *)

Formula

a(n) = A002110(n) / gcd( A005867(n), A002110(n) ).
A038110(n) / a(n) ~ exp( -gamma ) / log( prime(n) ), Mertens's theorem for x = prime(n) = A000040(n).
A038110(n) / a(n) = A005867(n) / A002110(n). - corrected by Simon Tatham, Jul 26 2016
a(n) = A038111(n) / prime(n). - Vladimir Shevelev, Jan 10 2014
a(n) = A038110(n) + A161527(n-1). - Jamie Morken, Jun 19 2019

Extensions

Definition corrected by Jonathan Sondow, Jan 31 2014

A250474 Number of times prime(n) occurs as the least prime factor among numbers 1 .. prime(n)^3: a(n) = A078898(A030078(n)).

Original entry on oeis.org

4, 5, 9, 14, 28, 36, 57, 67, 93, 139, 154, 210, 253, 272, 317, 396, 473, 504, 593, 658, 687, 792, 866, 979, 1141, 1229, 1270, 1356, 1397, 1496, 1849, 1947, 2111, 2159, 2457, 2514, 2695, 2880, 3007, 3204, 3398, 3473, 3828, 3904, 4047, 4121, 4583, 5061, 5228, 5309, 5474, 5743, 5832, 6269, 6543, 6816, 7107, 7197, 7488, 7686, 7784, 8295, 9029, 9248, 9354, 9568, 10351
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2014

Keywords

Comments

Position of the first composite number (which is always 4) on row n of A249821. The fourth column of A249822.
Position of the first nonfixed term on row n of arrays of permutations A251721 and A251722.
According to the definition, this is the number of multiples of prime(n) below prime(n)^3 (and thus, the number of numbers below prime(n)^2) which do not have a smaller factor than prime(n). That is, the numbers remaining below prime(n)^2 after deleting all multiples of primes less than prime(n), as is done by applying the first n-1 steps of the sieve of Eratosthenes (when the first step is elimination of multiples of 2). This explains that the first differences are a(n+1)-a(n) = A050216(n)-1 for n>1, and a(n) = A054272(n)+2. - M. F. Hasler, Dec 31 2014

Examples

			prime(1) = 2 occurs as the least prime factor in range [1,8] for four times (all even numbers <= 8), thus a(1) = 4.
prime(2) = 3 occurs as the least prime factor in range [1,27] for five times (when n is: 3, 9, 15, 21, 27), thus a(2) = 5.
		

Crossrefs

One more than A250473. Two more than A054272.
Column 4 of A249822.
Cf. also A250477 (column 6), A250478 (column 8).

Programs

  • Mathematica
    f[n_] := Count[Range[Prime[n]^3], x_ /; Min[First /@ FactorInteger[x]] == Prime@ n]; Array[f, 16] (* Michael De Vlieger, Mar 30 2015 *)
  • PARI
    A250474(n) = 3 + primepi(prime(n)^2) - n; \\ Fast implementation.
    for(n=1, 5001, write("b250474.txt", n, " ", A250474(n)));
    \\ The following program reflects the given sum formula, but is far from the optimal solution:
    allocatemem(234567890);
    A002110(n) = prod(i=1, n, prime(i));
    A020639(n) = if(1==n,n,vecmin(factor(n)[,1]));
    A055396(n) = if(1==n,0,primepi(A020639(n)));
    A250474(n) = { my(p2 = prime(n)^2); sumdiv(A002110(n-1), d, moebius(d)*(p2\d)); };
    for(n=1, 23, print1(A250474(n),", "));
    
  • Scheme
    (define (A250474 n) (let loop ((k 2)) (if (not (prime? (A249821bi n k))) k (loop (+ k 1))))) ;; This is even slower. Code for A249821bi given in A249821.

Formula

a(n) = 3 + A000879(n) - n = A054272(n) + 2 = A250473(n) + 1.
a(n) = A078898(A030078(n)).
a(1) = 1, a(n) = Sum_{d|A002110(n-1)} moebius(d)*floor(prime(n)^2/d). [Follows when A030078(n), prime(n)^3 is substituted to the similar formula given for A078898(n). Here A002110(n) gives the product of the first n primes. Because the latter is always squarefree, one could use also Liouville's lambda (A008836) instead of Moebius mu (A008683)].
Other identities. For all n >= 1:
A249821(n, a(n)) = 4.

A054272 Number of primes in the interval [prime(n), prime(n)^2].

Original entry on oeis.org

2, 3, 7, 12, 26, 34, 55, 65, 91, 137, 152, 208, 251, 270, 315, 394, 471, 502, 591, 656, 685, 790, 864, 977, 1139, 1227, 1268, 1354, 1395, 1494, 1847, 1945, 2109, 2157, 2455, 2512, 2693, 2878, 3005, 3202, 3396, 3471, 3826, 3902, 4045, 4119, 4581, 5059
Offset: 1

Views

Author

Labos Elemer, May 05 2000

Keywords

Comments

These primes are candidates for fortunate numbers (A005235).
These are precisely the primes available for the solution of Aguilar's conjecture or Haga's conjecture in Carlos Rivera's The Prime Puzzles and Problems Connection, (conjecture 26). Aguilar's conjecture states that at least one prime will be available for placement on each row and column of a p X p square array. Haga's conjecture states that just p primes are required for such placement in any p X p array. - Enoch Haga, Jan 23 2002
Also number of times p_n (the n-th prime) occurs as the least prime factor (A020639) among numbers in range [(p_n)+1, ((p_n)^3)-1]. For n=1, p_1 = 2 and there are two even numbers in range [3, 7], namely 4 and 6, so a(1) = 2. See also A250474. - Antti Karttunen, Dec 05 2014
The number of consecutive primes after the leading 1 in the prime(n)-rough numbers. - Benedict W. J. Irwin, Mar 24 2016

Examples

			n=4, the zone in question is [7,49] and encloses a(4)=12 primes, as follows: {7,11,13,17,19,23,29,31,37,41,43,47}.
		

Crossrefs

One less than A250473, two less than A250474.
First differences: A251723.

Programs

  • Mathematica
    a[n_] := PrimePi[Prime[n]^2] - n + 1; Array[a, 50] (* Jean-François Alcover, Dec 07 2015 *)
  • PARI
    \\ A fast version:
    default(primelimit, 2^31 + 2^30);
    A054272(n) = 1 + primepi(prime(n)^2) - n;
    for(n=1, 5000, write("b054272.txt", n, " ", A054272(n)));
    \\ The following mirrors the given new formula. It is far from an optimal way to compute this sequence:
    allocatemem(234567890);
    A002110(n) = prod(i=1, n, prime(i));
    A054272(n) = { my(p2); p2 = prime(n)^2; sumdiv(A002110(n), d, moebius(d)*floor(p2/d)); };
    for(n=1, 22, print1(A054272(n),", ")); \\ Antti Karttunen, Dec 05 2014

Formula

a(n) = A000879(n) - n + 1.
From Antti Karttunen, Dec 05-08 2014: (Start)
a(n) = A250473(n) - 1 = A250474(n) - 2.
a(n) = sum_{d | A002110(n)} moebius(d) * floor((p_n)^2 / d). [Where p_n is the n-th prime (A000040(n)) and A002110(n) gives the product of the first n primes. Because the latter is always squarefree, one could also use Liouville's lambda (A008836) instead of Moebius mu (A008683).]
The ratio (a(n) * A002110(n)) / (A001248(n) * A005867(n)) stays near 1, which follows from the above summation formula. See also A249747.
(End)

A048670 Jacobsthal function A048669 applied to the product of the first n primes (A002110).

Original entry on oeis.org

2, 4, 6, 10, 14, 22, 26, 34, 40, 46, 58, 66, 74, 90, 100, 106, 118, 132, 152, 174, 190, 200, 216, 234, 258, 264, 282, 300, 312, 330, 354, 378, 388, 414, 432, 450, 476, 492, 510, 538, 550, 574, 600, 616, 642, 660, 686, 718, 742, 762, 798, 810, 834, 858, 876, 908, 926, 954
Offset: 1

Views

Author

Keywords

Comments

Pintz shows that j(x#) >= (2*e^gamma + o(1)) x log x log log log x / (log log x)^2 and hence a(n) >= (2*e^gamma + o(1)) n log^2 n log log log n / (log log n)^2 by the Prime Number Theorem. - Charles R Greathouse IV, Sep 08 2012
Jacobsthal conjectures that a(n) >= j(k) := A048669(k) for any k with n prime factors, which would make this the RECORDS transform of A048669. Hajdu & Saradha disprove the conjecture, showing that this fails for n = 24 where j(k) = 236 > 234 = a(24) for any k divisible by 76964283982898776138308824190 and with 24 prime factors in total. - Charles R Greathouse IV, Sep 08 2012 / Edited by Jan Kristian Haugland, Feb 02 2019
Ford, Green, Konyagin, Maynard, & Tao show that j(x#) >> x log x log log log x / log log x and hence a(n) >> n log^2 n log log log n / log log n. - Charles R Greathouse IV, Mar 29 2018
Computation of a(62)-a(64) was supported by Google Cloud. - Andrzej Bozek, Mar 14 2021

References

  • L. E. Dickson, History of the Theory of Numbers, Vol. 1, p. 439, Chelsea, 1952.

Crossrefs

Programs

  • Mathematica
    (* This program is not suitable to compute more than a few terms *) primorial[n_] := Product[Prime[k], {k, 1, n}]; j[n_] := Module[{L = 1, m = 1}, For[k = 2, k <= n + 1, k++, If[GCD[k, n] == 1, If[L + m < k, m = k - L]; L = k]]; m]; a[n_] := a[n] = j[primorial[n]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 10}] (* Jean-François Alcover, Sep 27 2013, after M. F. Hasler *)

Formula

a(n) = A058989(n) + 1.
a(n) << n^2*(log n)^2, see Iwaniec. - Charles R Greathouse IV, Sep 08 2012
a(n) >= (2*e^gamma + o(1)) n log^2 n log log log n / (log log n)^2, see Pintz.
a(n) = 2 * A072752(n) + 2. - Mario Ziller, Dec 08 2016
Maier & Pomerance conjecture that Max_{n <= x} A048669(n) = log(x)*(log log x)^(2+o(1)) which suggests a(n) = n*(log n)^(3+o(1)). - Charles R Greathouse IV, Mar 29 2018
a(n) = largest (or last) term in row n of A331118. - Michael De Vlieger, Dec 11 2020

Extensions

a(21)-a(24) from Max Alekseyev, Apr 09 2006
a(25)-a(49) from Thomas Hagedorn, Feb 21 2007
a(46) corrected (published value in Hagedorn's 2009 Mathematics of Computation article was correct) and a(50)-a(54) added by Mario Ziller, Dec 08 2016
a(55)-a(57) from Robert Gerbicz, Apr 10 2017
a(58)-a(64) from Andrzej Bozek, Mar 14 2021

A008366 Smallest prime factor is >= 17.

Original entry on oeis.org

1, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283
Offset: 1

Views

Author

Keywords

Comments

Also the 17-rough numbers: positive integers that have no prime factors less than 17. - Michael B. Porter, Oct 10 2009
a(n) - (1001/192) n is periodic with period 5760. - Robert Israel, Mar 18 2016
From Peter Bala, May 12 2018: (Start)
The product of two 17-rough numbers is a 17-rough number and the prime factors of a 17-rough number are 17-rough numbers.
Let k equal either 13, 14, 15 or 16. Then the product of k numbers n*(n + a)*(n + 2*a)*...*(n + (k-1)*a) in arithmetical progression is divisible by k! for all integer n if and only if a is a 17-rough number.
The sequence terms satisfy the congruence x^60 = 1 (mod 30030), where 30030 = 2*3*5*7*11*13. (End)
The asymptotic density of this sequence is 192/1001. - Amiram Eldar, Sep 30 2020

Crossrefs

For k-rough numbers with other values of k, see A000027 A005408 A007310 A007775 A008364 A008365 A008366 A166061 A166063.
Cf. A005867.

Programs

  • Maple
    for i from 1 to 500 do if gcd(i,30030) = 1 then print(i); fi; od;
  • Mathematica
    Select[ Range[ 300 ], GCD[ #1, 30030 ]==1& ]
    Join[{1},Select[Range[300],FactorInteger[#][[1,1]]>=17&]] (* Harvey P. Dale, Mar 28 2020 *)
  • PARI
    isA008366(n) = gcd(n,30030)==1 \\ Michael B. Porter, Oct 10 2009

Formula

Numbers n > 1 such that ((Sum_{k=1..n} k^10) mod n = 0) and ((Sum_{k=1..n} k^12) mod n = 0) (conjecture). - Gary Detlefs, Dec 27 2011
a(n) = a(n-1) + a(n-5760) - a(n-5761). - Vaclav Kotesovec, Mar 18 2016
G.f: x*P(x)/(1 - x - x^5760 + x^5761) where P(x) is a polynomial of degree 5760. - Benedict W. J. Irwin, Mar 23 2016
a(n) = (1001/192)*n + O(1), where the O(1) term is bounded by +/- 19. - Charles R Greathouse IV, Oct 13 2022
A008365 SETMINUS A084970 . - R. J. Mathar, Nov 05 2024

A058254 a(n) = lcm{prime(i)-1, i=1..n}.

Original entry on oeis.org

1, 1, 2, 4, 12, 60, 60, 240, 720, 7920, 55440, 55440, 55440, 55440, 55440, 1275120, 16576560, 480720240, 480720240, 480720240, 480720240, 480720240, 480720240, 19709529840, 19709529840, 39419059680, 197095298400, 3350620072800, 177582863858400, 532748591575200
Offset: 0

Views

Author

Labos Elemer, Dec 06 2000

Keywords

Comments

A002110(n) divides b^(a(n)+1) - b for every integer b. - Thomas Ordowski, Nov 24 2014
What is the asymptotic growth of this sequence? a(n) <= A005867(n) <= A002110(n) < e^((1 + o(1))n log n) but this is a large overestimate. - Charles R Greathouse IV, Dec 03 2014
Alexander Kalmynin gives a proof that log a(n) = O(p log log p/log p) where p is the n-th prime, see the MathOverflow link. - Charles R Greathouse IV, Sep 17 2021

Examples

			For n = 5 and 6: a(5) = a(6) = LCM[1, 2, 4, 6, 10, 12] = 60.
		

Crossrefs

Programs

  • Haskell
    a058254 n = a058254_list !! (n-1)
    a058254_list = scanl1 lcm a006093_list
    -- Reinhard Zumkeller, May 01 2013
    
  • Maple
    seq(ilcm(seq(ithprime(i)-1,i=1..n)), n=0..100); # Robert Israel, Nov 24 2014
  • Mathematica
    Table[LCM @@ (Prime@ Range[1, n] - 1), {n, 27}] (* Michael De Vlieger, Dec 31 2016 *)
  • PARI
    a(n)=lcm(apply(p->p-1, primes(n))) \\ Charles R Greathouse IV, Dec 03 2014

Formula

a(n) = A002322(A002110(n)). - Thomas Ordowski, Nov 24 2014

Extensions

Offset corrected by Reinhard Zumkeller, May 01 2013
a(0)=1 prepended by Alois P. Heinz, Apr 01 2021

A049296 First differences of A008364. Also first differences of reduced residue system (RRS) for 4th primorial number, A002110(4)=210.

Original entry on oeis.org

10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 10, 2, 10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 10, 2, 10, 2, 4, 2, 4, 6, 2
Offset: 1

Views

Author

Keywords

Comments

First differences of reduced residue systems modulo primorial numbers are essentially palindromic + 1 separator term (2). The palindromic part starts and ends with p_(n+1)-1 for the n-th primorial number.
This sequence has period A005867(4)=A000010(A002110(4))=48. The 0th, first, 2nd and 3rd similar difference sequences are as follows: {1},{2},{4,2},{6,4,2,4,2,4,6,2} obtained from reduced residue systems of consecutive primorials.
Difference sequence of the "4th diatomic sequence" - A. de Polignac (1849), J. Dechamps (1907).

References

  • Dickson L. E., History of the Theory of Numbers, Vol. 1, p. 439, Chelsea, 1952.

Crossrefs

Programs

  • Haskell
    a049296 n = a049296_list !! (n-1)
    a049296_list = zipWith (-) (tail a008364_list) a008364_list
    -- Reinhard Zumkeller, Jan 06 2013
  • Mathematica
    t1=Table[ GCD[ w, 210 ], {w, 1, 210} ] /t2=Flatten[ Position[ t1, 1 ] ] /t3=Mod[ RotateLeft[ t2 ]-t2, 210 ]
    Differences[Select[Range[600],GCD[#,210]==1&]] (* Harvey P. Dale, Jan 13 2012 *)

Extensions

Corrected by Frederic Devaux, Feb 02 2007

A005579 a(n) = smallest number k such that Product_{i=1..k} prime(i)/(prime(i)-1) > n.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 9, 14, 22, 35, 55, 89, 142, 230, 373, 609, 996, 1637, 2698, 4461, 7398, 12301, 20503, 34253, 57348, 96198, 161659, 272124, 458789, 774616, 1309627, 2216968, 3757384, 6375166, 10828012, 18409028, 31326514, 53354259, 90945529, 155142139
Offset: 0

Views

Author

Keywords

Comments

Laatsch (1986) proved that for n >= 2, a(n) gives the smallest number of distinct prime factors in even numbers having an abundancy index > n.
The abundancy index of a number k is sigma(k)/k. - T. D. Noe, May 08 2006
The first differences of this sequence, A005347, begin the same as the Fibonacci sequence A000045. - T. D. Noe, May 08 2006
Equal to A256968 except for n = 2 and n = 3. See comment in A256968. - Chai Wah Wu, Apr 17 2015

Examples

			The products Product_{i=1..k} prime(i)/(prime(i)-1) for k >= 0 start with 1, 2, 3, 15/4, 35/8, 77/16, 1001/192, 17017/3072, 323323/55296, 676039/110592, 2800733/442368, 86822723/13271040, 3212440751/477757440, 131710070791/19110297600, 5663533044013/802632499200, ... = A060753/A038110. So a(3) = 3.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A001611 is similar but strictly different.

Programs

  • Mathematica
    (* For speed and accuracy, the second Mathematica program uses 30-digit real numbers and interval arithmetic. *)
    prod=1; k=0; Table[While[prod<=n, k++; prod=prod*Prime[k]/(Prime[k]-1)]; k, {n,0,25}] (* T. D. Noe, May 08 2006 *)
    prod=Interval[1]; k=0; Table[While[Max[prod]<=n, k++; p=Prime[k]; prod=N[prod*p/(p-1),30]]; If[Min[prod]>n, k, "too few digits"], {n,0,38}]
  • PARI
    a(n)=my(s=1,k); forprime(p=2,, s*=p/(p-1); k++; if(s>n, return(k))) \\ Charles R Greathouse IV, Aug 20 2015
    
  • Python
    from sympy import nextprime
    def a_list(upto: int) -> list[int]:
        L: list[int] = [0]
        count = 1; bn = 1; bd = 1; p = 2
        for k in range(1, upto + 1):
            bn *= p
            bd *= p - 1
            while bn > count * bd:
                L.append(k)
                count += 1
            p = nextprime(p)
        return L
    print(a_list(1000))  # Chai Wah Wu, Apr 17 2015, adapted by Peter Luschny, Jan 25 2025

Formula

a(n) = smallest k such that A002110(k)/A005867(k) > n. - Artur Jasinski, Nov 06 2008
a(n) = PrimePi(A091440(n)) = A000720(A091440(n)) for n >= 4. - Amiram Eldar, Apr 18 2025

Extensions

Edited by T. D. Noe, May 08 2006
a(26) added by T. D. Noe, Sep 18 2008
Typo corrected by Vincent E. Yu (yu.vincent.e(AT)gmail.com), Aug 14 2009
a(27)-a(36) from Vincent E. Yu (yu.vincent.e(AT)gmail.com), Aug 14 2009
Comment corrected by T. D. Noe, Apr 04 2010
a(37)-a(39) from T. D. Noe, Nov 16 2010
Edited and terms a(0)-a(1) prepended by Max Alekseyev, Jan 25 2025

A058250 GCD of n-th primorial number and its totient.

Original entry on oeis.org

1, 1, 2, 2, 6, 30, 30, 30, 30, 330, 2310, 2310, 2310, 2310, 2310, 53130, 690690, 20030010, 20030010, 20030010, 20030010, 20030010, 20030010, 821230410, 821230410, 821230410, 821230410, 13960916970, 739928599410, 739928599410
Offset: 0

Views

Author

Labos Elemer, Dec 05 2000

Keywords

Examples

			a(6) = gcd(30030,5760) = 30.
		

Crossrefs

Programs

  • Maple
    [seq(igcd(product(ithprime(k), k=1..m), product(ithprime(k)-1, k=1..m)), m=1..50)];
  • Mathematica
    GCD[#,EulerPhi[#]]&/@Rest[FoldList[Times,1,Prime[Range[30]]]] (* Harvey P. Dale, Dec 19 2012 *)
    Fold[Append[#1, {#1, #2, GCD[#1, #2]} & @@ {#4 #1, #2 (#4 - 1)} & @@ Append[#1[[-1]], #2]] &, {{1, 1, 1}}, Prime@ Range[29]][[All, -1]] (* Michael De Vlieger, Apr 25 2019 *)
  • PARI
    a(n) = my(pr=prod(k=1, n, prime(k))); gcd(pr, eulerphi(pr)); \\ Michel Marcus, Apr 13 2019

Formula

a(n) = gcd(A002110(n), A000010(A002110(n))) = gcd(A002110(n), A005867(n)).
a(n) = A005867(n) / A038110(n+1). For example: For n = 4: a(4) = 48 / 8 = 6. - Jamie Morken, Apr 12 2019

Extensions

a(0) = 1 inserted by Michael De Vlieger, Apr 13 2019
Previous Showing 21-30 of 106 results. Next