cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 150 results. Next

A063522 a(n) = n*(5*n^2 - 3)/2.

Original entry on oeis.org

0, 1, 17, 63, 154, 305, 531, 847, 1268, 1809, 2485, 3311, 4302, 5473, 6839, 8415, 10216, 12257, 14553, 17119, 19970, 23121, 26587, 30383, 34524, 39025, 43901, 49167, 54838, 60929, 67455, 74431, 81872, 89793, 98209, 107135, 116586, 126577, 137123, 148239, 159940
Offset: 0

Views

Author

N. J. A. Sloane, Aug 02 2001

Keywords

Crossrefs

(1/12)*t*(n^3 - n) + n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
Bisections: A160674, A160699.

Programs

  • Magma
    [n*(5*n^2 -3)/2: n in [0..30]]; // G. C. Greubel, May 02 2018
  • Mathematica
    lst={};Do[AppendTo[lst, LegendreP[3, n]], {n, 10^2}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    CoefficientList[Series[x*(1 + 13*x + x^2)/(1-x)^4, {x, 0, 50}], x] (* G. C. Greubel, Sep 01 2017 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,17,63},40] (* Harvey P. Dale, Sep 06 2023 *)
  • PARI
    a(n) = { n*(5*n^2 - 3)/2 } \\ Harry J. Smith, Aug 25 2009
    

Formula

G.f.: x*(1 + 13*x + x^2)/(1-x)^4. - Colin Barker, Jan 10 2012
E.g.f.: (x/2)*(2 + 15*x + 5*x^2)*exp(x). - G. C. Greubel, Sep 01 2017

A004467 a(n) = n*(11*n^2 - 5)/6.

Original entry on oeis.org

0, 1, 13, 47, 114, 225, 391, 623, 932, 1329, 1825, 2431, 3158, 4017, 5019, 6175, 7496, 8993, 10677, 12559, 14650, 16961, 19503, 22287, 25324, 28625, 32201, 36063, 40222, 44689, 49475, 54591, 60048
Offset: 0

Views

Author

Albert D. Rich (Albert_Rich(AT)msn.com)

Keywords

Comments

3-dimensional analog of centered polygonal numbers, that is: centered hendecagonal pyramidal numbers (see Deza paper in References).

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.

Crossrefs

1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.

Programs

Formula

G.f.: x*(1+9*x+x^2)/(1-x)^4. - Colin Barker, Jan 08 2012
a(0)=0, a(1)=1, a(2)=13, a(3)=47; for n>3, a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Sep 22 2013
E.g.f.: (x/6)*(6 + 33*x + 11*x^2)*exp(x). - G. C. Greubel, Sep 01 2017

A062025 a(n) = n*(13*n^2 - 7)/6.

Original entry on oeis.org

0, 1, 15, 55, 134, 265, 461, 735, 1100, 1569, 2155, 2871, 3730, 4745, 5929, 7295, 8856, 10625, 12615, 14839, 17310, 20041, 23045, 26335, 29924, 33825, 38051, 42615, 47530, 52809, 58465, 64511, 70960, 77825, 85119, 92855, 101046, 109705, 118845, 128479, 138620, 149281
Offset: 0

Views

Author

N. J. A. Sloane, Aug 02 2001

Keywords

Crossrefs

1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.

Programs

Formula

From G. C. Greubel, Sep 01 2017: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: (x + 11*x^2 + x^3)/(1 - x)^4.
E.g.f.: (x/6)*(6 + 39*x + 13*x^2)*exp(x). (End)

A063523 a(n) = n*(8*n^2 - 5)/3.

Original entry on oeis.org

0, 1, 18, 67, 164, 325, 566, 903, 1352, 1929, 2650, 3531, 4588, 5837, 7294, 8975, 10896, 13073, 15522, 18259, 21300, 24661, 28358, 32407, 36824, 41625, 46826, 52443, 58492, 64989, 71950, 79391, 87328, 95777, 104754, 114275, 124356, 135013, 146262, 158119, 170600
Offset: 0

Views

Author

N. J. A. Sloane, Aug 02 2001

Keywords

Comments

Also as a(n)=(1/6)*(16*n^3-10*n), n>0: structured octagonal anti-diamond numbers (vertex structure 17) (Cf. A100187 = alternate vertex; A100188 = structured anti-diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004

Crossrefs

1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.

Programs

  • Mathematica
    Table[n(8n^2-5)/3,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,18,67},81] (* or *) CoefficientList[ Series[ (x+14 x^2+x^3)/(x-1)^4,{x,0,80}],x] (* Harvey P. Dale, Jul 11 2011 *)
  • PARI
    a(n) = n*(8*n^2 - 5)/3 \\ Harry J. Smith, Aug 25 2009

Formula

a(0)=0, a(1)=1, a(2)=18, a(3)=67, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)- a(n-4). - Harvey P. Dale, Jul 11 2011
G.f.: (x+14*x^2+x^3)/(x-1)^4. - Harvey P. Dale, Jul 11 2011
E.g.f.: (x/3)*(3 + 24*x + 8*x^2)*exp(x). - G. C. Greubel, Sep 01 2017

A139601 Square array of polygonal numbers read by ascending antidiagonals: T(n, k) = (n + 1)*(k - 1)*k/2 + k.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 4, 6, 0, 1, 5, 9, 10, 0, 1, 6, 12, 16, 15, 0, 1, 7, 15, 22, 25, 21, 0, 1, 8, 18, 28, 35, 36, 28, 0, 1, 9, 21, 34, 45, 51, 49, 36, 0, 1, 10, 24, 40, 55, 66, 70, 64, 45, 0, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 0, 1, 12, 30, 52, 75, 96, 112, 120, 117, 100, 66
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

A general formula for polygonal numbers is P(n,k) = (n-2)(k-1)k/2 + k, where P(n,k) is the k-th n-gonal number. - Omar E. Pol, Dec 21 2008

Examples

			The square array of polygonal numbers begins:
========================================================
Triangulars .. A000217: 0, 1,  3,  6, 10,  15,  21,  28,
Squares ...... A000290: 0, 1,  4,  9, 16,  25,  36,  49,
Pentagonals .. A000326: 0, 1,  5, 12, 22,  35,  51,  70,
Hexagonals ... A000384: 0, 1,  6, 15, 28,  45,  66,  91,
Heptagonals .. A000566: 0, 1,  7, 18, 34,  55,  81, 112,
Octagonals ... A000567: 0, 1,  8, 21, 40,  65,  96, 133,
9-gonals ..... A001106: 0, 1,  9, 24, 46,  75, 111, 154,
10-gonals .... A001107: 0, 1, 10, 27, 52,  85, 126, 175,
11-gonals .... A051682: 0, 1, 11, 30, 58,  95, 141, 196,
12-gonals .... A051624: 0, 1, 12, 33, 64, 105, 156, 217,
And so on ..............................................
========================================================
		

Crossrefs

Sequences of m-gonal numbers: A000217 (m=3), A000290 (m=4), A000326 (m=5), A000384 (m=6), A000566 (m=7), A000567 (m=8), A001106 (m=9), A001107 (m=10), A051682 (m=11), A051624 (m=12), A051865 (m=13), A051866 (m=14), A051867 (m=15), A051868 (m=16), A051869 (m=17), A051870 (m=18), A051871 (m=19), A051872 (m=20), A051873 (m=21), A051874 (m=22), A051875 (m=23), A051876 (m=24), A255184 (m=25), A255185 (m=26), A255186 (m=27), A161935 (m=28), A255187 (m=29), A254474 (m=30).

Programs

  • Magma
    T:= func< n,k | k*((n+1)*(k-1) +2)/2 >;
    A139601:= func< n,k | T(n-k, k) >;
    [A139601(n,k): k in  [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2024
    
  • Mathematica
    T[n_, k_] := (n + 1)*(k - 1)*k/2 + k; Table[ T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 12 2009 *)
  • SageMath
    def T(n,k): return k*((n+1)*(k-1)+2)/2
    def A139601(n,k): return T(n-k, k)
    flatten([[A139601(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 12 2024

Formula

T(n,k) = A086270(n,k), k>0. - R. J. Mathar, Aug 06 2008
T(n,k) = (n+1)*(k-1)*k/2 +k, n>=0, k>=0. - Omar E. Pol, Jan 07 2009
From G. C. Greubel, Jul 12 2024: (Start)
t(n, k) = (k/2)*( (k-1)*(n-k+1) + 2), where t(n,k) is this array read by rising antidiagonals.
t(2*n, n) = A006003(n).
t(2*n+1, n) = A002411(n).
t(2*n-1, n) = A006000(n-1).
Sum_{k=0..n} t(n, k) = A006522(n+2).
Sum_{k=0..n} (-1)^k*t(n, k) = (-1)^n * A117142(n).
Sum_{k=0..n} t(n-k, k) = (2*n^4 + 34*n^2 + 48*n - 15 + 3*(-1)^n*(2*n^2 + 16*n + 5))/384. (End)

A072474 Sum of next n squares.

Original entry on oeis.org

1, 13, 77, 294, 855, 2071, 4403, 8492, 15189, 25585, 41041, 63218, 94107, 136059, 191815, 264536, 357833, 475797, 623029, 804670, 1026431, 1294623, 1616187, 1998724, 2450525, 2980601, 3598713, 4315402, 5142019, 6090755, 7174671, 8407728, 9804817, 11381789, 13155485
Offset: 1

Views

Author

Amarnath Murthy, Jun 20 2002

Keywords

Examples

			a(1) = 1^2 = 1;
a(2) = 2^2 + 3^2 = 13;
a(3) = 4^2 + 5^2 + 6^2 = 77.
		

Crossrefs

Cf. A006003 (for natural numbers), A260513 (for triangular numbers), A372583 (for pentagonal numbers), A372751 (for hexagonal numbers), A075664 (for cubes).

Programs

  • Magma
    [n*(3*n^2+1)*(n^2+2)/12: n in [1..35]]; // Vincenzo Librandi, Dec 31 2024
  • Mathematica
    Table[Sum[ i^2, {i, n(n - 1)/2 + 1, n(n + 1)/2}], {n, 1, 35}]
  • PARI
    a(n) = n*(3*n^2+1)*(n^2+2)/12
    

Formula

a(n) = k*(k+1)*(2*k+1)/6 - r*(r+1)*(2*r+1)/6, where k = n*(n+1)/2 and r = n*(n-1)/2.
a(n) = A000330(n*(n+1)/2) - A000330(n*(n-1)/2).
a(n) = (n/12)*(3*n^2 + 1)*(n^2 + 2). - Benoit Cloitre, Jun 26 2002
G.f.: x*(1+3*x+x^2)*(1+4*x+x^2)/(1-x)^6. - Colin Barker, Mar 23 2012
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 6. - Jinyuan Wang, May 25 2020
E.g.f.: exp(x)*x*(12 + 66*x + 82*x^2 + 30*x^3 + 3*x^4)/12. - Stefano Spezia, May 14 2024

Extensions

Edited by Robert G. Wilson v, Jun 21 2002

A074279 n appears n^2 times.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Views

Author

Jon Perry, Sep 21 2002

Keywords

Comments

Since the last occurrence of n comes one before the first occurrence of n+1 and the former is at Sum_{i=0..n} i^2 = A000330(n), we have a(A000330(n)) = a(n*(n+1)*(2n+1)/6) = n and a(1+A000330(n)) = a(1+(n*(n+1)*(2n+1)/6)) = n+1. So the current sequence is, loosely speaking, the inverse function of the square pyramidal sequence A000330. A000330 has many alternative formulas, thus yielding many alternative formulas for the current sequence. - Jonathan Vos Post, Mar 18 2006
Partial sums of A253903. - Jeremy Gardiner, Jan 14 2018

Examples

			This can be viewed also as an irregular table consisting of successively larger square matrices:
  1;
  2, 2;
  2, 2;
  3, 3, 3;
  3, 3, 3;
  3, 3, 3;
  4, 4, 4, 4;
  4, 4, 4, 4;
  4, 4, 4, 4;
  4, 4, 4, 4;
  etc.
When this is used with any similarly organized sequence, a(n) is the index of the matrix in whose range n is. A121997(n) (= A237451(n)+1) and A238013(n) (= A237452(n)+1) would then yield the index of the column and row within that matrix.
		

Crossrefs

Programs

  • Mathematica
    Table[n, {n, 0, 6}, {n^2}] // Flatten (* Arkadiusz Wesolowski, Jan 13 2013 *)
  • PARI
    A074279_vec(N=9)=concat(vector(N,i,vector(i^2,j,i))) \\ Note: This creates a vector; use A074279_vec()[n] to get the n-th term. - M. F. Hasler, Feb 17 2014
    
  • PARI
    a(n) = my(k=sqrtnint(3*n,3)); k + (6*n > k*(k+1)*(2*k+1)); \\ Kevin Ryde, Sep 03 2025
    
  • Python
    from sympy import integer_nthroot
    def A074279(n): return (m:=integer_nthroot(3*n,3)[0])+(6*n>m*(m+1)*((m<<1)+1)) # Chai Wah Wu, Nov 04 2024

Formula

For 1 <= n <= 650, a(n) = floor((3n)^(1/3)+1/2). - Mikael Aaltonen, Jan 05 2015
a(n) = 1 + floor( t(n) + 1 / ( 12 * t(n) ) - 1/2 ), where t(n) = (sqrt(3888*(n-1)^2-1) / (8*3^(3/2)) + 3 * (n-1)/2 ) ^(1/3). - Mikael Aaltonen, Mar 01 2015
a(n) = floor(t + 1/(12*t) + 1/2), where t = (3*n - 1)^(1/3). - Ridouane Oudra, Oct 30 2023
a(n) = m+1 if n > m(m+1)(2m+1)/6 and a(n) = m otherwise where m = floor((3n)^(1/3)). - Chai Wah Wu, Nov 04 2024
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - Amiram Eldar, Jun 30 2025

Extensions

Offset corrected from 0 to 1 by Antti Karttunen, Feb 08 2014

A006008 Number of inequivalent ways to color vertices of a regular tetrahedron using <= n colors.

Original entry on oeis.org

0, 1, 5, 15, 36, 75, 141, 245, 400, 621, 925, 1331, 1860, 2535, 3381, 4425, 5696, 7225, 9045, 11191, 13700, 16611, 19965, 23805, 28176, 33125, 38701, 44955, 51940, 59711, 68325, 77841, 88320, 99825, 112421, 126175, 141156, 157435, 175085, 194181, 214800, 237021, 260925, 286595, 314116, 343575
Offset: 0

Views

Author

N. J. A. Sloane, Clint. C. Williams (Clintwill(AT)aol.com)

Keywords

Comments

Here "inequivalent" refers to the rotation group of the tetrahedron, of order 12, with cycle index (x1^4 + 8*x1*x3 + 3*x2^2)/12, which is also the alternating group A_4.
Equivalently, number of distinct tetrahedra that can be obtained by painting its faces using at most n colors. - Lekraj Beedassy, Dec 29 2007
Equals row sums of triangle A144680. - Gary W. Adamson, Sep 19 2008

References

  • J.-P. Delahaye, 'Le miraculeux "lemme de Burnside"', 'Le coloriage du tetraedre' pp 147 in 'Pour la Science' (French edition of 'Scientific American') No.350 December 2006 Paris.
  • Martin Gardner, New Mathematical Diversions from Scientific American. Simon and Schuster, NY, 1966, p. 246.
  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A144680. - Gary W. Adamson, Sep 19 2008
Cf. A000332(n+3) (unoriented), A000332 (chiral), A006003 (achiral).
Row 3 of A324999.

Programs

  • Magma
    [(n^4 + 11*n^2 )/12: n in [0..40]]; // Vincenzo Librandi, Aug 12 2011
    
  • Maple
    A006008 := n->1/12*n^2*(n^2+11);
    A006008:=-z*(z+1)*(z**2-z+1)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[(n^4+11n^2)/12,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,5,15,36},40] (* Harvey P. Dale, Aug 11 2011 *)
  • PARI
    apply( {A006008(n)=(n^4+11*n^2)/12}, [0..50]) \\ M. F. Hasler, Jan 26 2020

Formula

a(n) = (n^4 + 11*n^2)/12. (Replace all x_i's in the cycle index with n.)
Binomial transform of [1, 4, 6, 5, 2, 0, 0, 0, ...]. - Gary W. Adamson, Apr 23 2008
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with a(0)=0, a(1)=1, a(2)=5, a(3)=15, a(4)=36. - Harvey P. Dale, Aug 11 2011
a(n) = C(n,1) + 3C(n,2) + 3C(n,3) + 2C(n,4). Each term indicates the number of tetrahedra with exactly 1, 2, 3, or 4 colors. - Robert A. Russell, Dec 03 2014
a(n) = binomial(n+3,4) + binomial(n,4). - Collin Berman, Jan 26 2016
a(n) = A000332(n+3) + A000332(n) = 2*A000332(n+3) - A006003(n) = 2*A000332(n) + A006003(n).
a(n) = A324999(3,n).
E.g.f.: (1/12)*exp(x)*x*(12 + 18*x + 6*x^2 + x^3). - Stefano Spezia, Jan 26 2020
Sum_{n>=1} 1/a(n) = (6 + 22*Pi^2 - 6*sqrt(11)*Pi*coth(sqrt(11)*Pi))/121. - Amiram Eldar, Aug 23 2022

A057003 Write the natural numbers in groups: 1; 2,3; 4,5,6; 7,8,9,10; ... and multiply the members of each group.

Original entry on oeis.org

1, 6, 120, 5040, 360360, 39070080, 5967561600, 1220096908800, 321570878428800, 106137499051584000, 42873948150095462400, 20803502274492921984000, 11938961126118491232768000, 7998487694738166709923840000, 6185983879158893706209144832000
Offset: 1

Views

Author

Robert G. Wilson v, Sep 09 2000

Keywords

Comments

Each group begins with a triangular number + 1 and proceeds until the next triangular number.

Crossrefs

Cf. A006003.

Programs

  • Maple
    a:= n-> binomial(n*(n+1)/2, n) * n!:
    seq(a(n), n=1..20);  # Alois P. Heinz, Aug 17 2012
  • Mathematica
    Table[(n (n + 1)/2)!/((n - 1) n /2)!, {n, 1, 15}]
    With[{nn=15},Times@@@TakeList[Range[(nn(nn+1))/2],Range[nn]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Sep 21 2017 *)

Formula

(n (n + 1)/2)!/((n - 1) n /2)!.
a(n) ~ n^(2*n)/2^n. - Vaclav Kotesovec, Jul 13 2021

A075664 Sum of next n cubes.

Original entry on oeis.org

0, 1, 35, 405, 2584, 11375, 38961, 111475, 278720, 627669, 1300375, 2516921, 4604040, 8030035, 13446629, 21738375, 34080256, 52004105, 77474475, 112974589, 161603000, 227181591, 314375545, 428825915, 577295424, 767828125, 1009923551, 1314725985, 1695229480, 2166499259
Offset: 0

Views

Author

Zak Seidov, Sep 24 2002

Keywords

Examples

			a(1) = 1^3 = 1; a(2) = 2^3 + 3^3 = 35; a(3) = 4^3 + 5^3 + 6^3 = 64 + 125 + 216 = 405.
From _Philippe Deléham_, Mar 09 2014: (Start)
a(1) = 1*2*3/8 = 1;
a(2) = 8*5*7/8 = 35;
a(3) = 27*10*12/8 = 405;
a(4) = 64*17*19/8 = 2584;
a(5) = 125*26*28/8 = 11375; etc. (End)
		

Crossrefs

Cf. A000578 (cubes).
Cf. A006003, A072474 (for squares), A075665 - A075671 (4th to 10th powers), A069876 (n-th powers).

Programs

  • Magma
    [(n^7+4*n^5+3*n^3)/8: n in [1..30]]; // Vincenzo Librandi, Mar 11 2014
    
  • Maple
    A075664:=n->(n^7 + 4n^5 + 3n^3)/8; seq(A075664(n), n=1..30); # Wesley Ivan Hurt, Mar 10 2014
  • Mathematica
    i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=3; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
    CoefficientList[Series[(1 + 27 x + 153 x^2 + 268 x^3 + 153 x^4 + 27 x^5 + x^6)/(1 - x)^8, {x, 0, 40}], x](* Vincenzo Librandi, Mar 11 2014 *)
    With[{nn=30},Total/@TakeList[Range[(nn(nn+1))/2]^3,Range[nn]]] (* Requires Mathematica version 11 or later *) (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,35,405,2584,11375,38961,111475,278720},30] (* Harvey P. Dale, Jun 05 2021 *)
  • PARI
    a(n)=(n^7+4*n^5+3*n^3)/8 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Python
    def A075664(n): return n*(m:=n**2)*(m*(m+4)+3)>>3 # Chai Wah Wu, Feb 09 2025

Formula

a(n) = Sum_{i=n(n-1)/2+1..n(n-1)/2+n} i^3. [Corrected by Stefano Spezia, Jun 22 2024]
a(n) = (n^7 + 4n^5 + 3n^3)/8. - Charles R Greathouse IV, Sep 17 2009
G.f.: x*(1+27*x+153*x^2+268*x^3+153*x^4+27*x^5+x^6)/(1-x)^8. - Colin Barker, May 25 2012
a(n) = n^3*(n^2 + 1)*(n^2 + 3)/8 = A000578(n)*A002522(n)*A117950(n)/8. - Philippe Deléham, Mar 09 2014
E.g.f.: exp(x)*x*(8 + 132*x + 404*x^2 + 390*x^3 + 144*x^4 + 21*x^5 + x^6)/8. - Stefano Spezia, Jun 22 2024

Extensions

Formula from Charles R Greathouse IV, Sep 17 2009
More terms from Vincenzo Librandi, Mar 11 2014
a(0) added by Chai Wah Wu, Feb 09 2025
Previous Showing 31-40 of 150 results. Next