cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 145 results. Next

A046324 Product of 6 successive primes.

Original entry on oeis.org

30030, 255255, 1616615, 7436429, 30808063, 86822723, 247110827, 595973171, 1348781387, 2756205443, 5037203051, 9586934839, 15805487167, 25828479029, 42647023513, 66238993967, 98733594781, 138896412997, 202652143553
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Programs

  • Magma
    [&*[ NthPrime(n+k): k in [0..5] ]: n in [1..19] ];  // Bruno Berselli, Feb 25 2011
  • Mathematica
    Times@@@Partition[Prime[Range[200]],6,1] (* Harvey P. Dale, Oct 21 2011 *)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Jan 16 2012

A046326 Product of 8 successive primes.

Original entry on oeis.org

9699690, 111546435, 1078282205, 6685349671, 35336848261, 131710070791, 435656388001, 1204461778591, 3359814435017, 8618654420261, 18128893780549, 39181802686993, 75186702453419, 133869006807307, 245945384599471
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Cf. A002110.
Cf. product of n successive primes: A006094, A046301, A046302, A046303, A046324, A046325, A046327.

Programs

  • Magma
    [&*[ NthPrime(n+k): k in [0..7] ]: n in [1..15]];  // Bruno Berselli, Feb 25 2011
  • Mathematica
    Times@@@Partition[Prime[Range[50]],8,1] (* Harvey P. Dale, Oct 21 2011 *)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Jan 16 2012

A046327 Numbers that are the product of 9 successive primes.

Original entry on oeis.org

223092870, 3234846615, 33426748355, 247357937827, 1448810778701, 5663533044013, 20475850236047, 63836474265323, 198229051666003, 525737919635921, 1214635883296783, 2781907990776503, 5488629279099587
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Cf. A002110.
Cf. product of n successive primes: A006094, A046301, A046302, A046303, A046324, A046326.

Programs

Formula

a(n) = Product_{j=n..n+8} prime(j). - Jon E. Schoenfield, Jan 07 2015

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Aug 26 2008
Offset changed from 0 to 1 by Vincenzo Librandi, Jan 16 2012

A073490 Number of prime gaps in factorization of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Comments

A137723(n) is the smallest number of the first occurring set of exactly n consecutive numbers with at least one prime gap in their factorization: a(A137723(n)+k)>0 for 0<=kA137723(n)-1)=a(A137723(n)+n)=0. - Reinhard Zumkeller, Feb 09 2008

Examples

			84 = 2*2*3*7 with one gap between 3 and 7, therefore a(84) = 1;
110 = 2*5*11 with two gaps: between 2 and 5 and between 5 and 11, therefore a(110) = 2.
		

Crossrefs

Programs

  • Haskell
    a073490 1 = 0
    a073490 n = length $ filter (> 1) $ zipWith (-) (tail ips) ips
       where ips = map a049084 $ a027748_row n
    -- Reinhard Zumkeller, Jul 04 2012
    
  • Maple
    A073490 := proc(n)
        local a,plist ;
        plist := sort(convert(numtheory[factorset](n),list)) ;
        a := 0 ;
        for i from 2 to nops(plist) do
            if op(i,plist) <> nextprime(op(i-1,plist)) then
                a := a+1 ;
            end if;
        end do:
        a;
    end proc:
    seq(A073490(n),n=1..110) ; # R. J. Mathar, Oct 27 2019
  • Mathematica
    gaps[n_Integer/;n>0]:=If[n===1, 0, Complement[Prime[PrimePi[Rest[ # ]]-1], # ]&[First/@FactorInteger[n]]]; Table[Length[gaps[n]], {n, 1, 120}] (* Wouter Meeussen, Oct 30 2004 *)
    pa[n_, k_] := If[k == NextPrime[n], 0, 1]; Table[Total[pa @@@ Partition[First /@ FactorInteger[n], 2, 1]], {n, 120}] (* Jayanta Basu, Jul 01 2013 *)
  • Python
    from sympy import primefactors, nextprime
    def a(n):
        pf = primefactors(n)
        return sum(p2 != nextprime(p1) for p1, p2 in zip(pf[:-1], pf[1:]))
    print([a(n) for n in range(1, 121)]) # Michael S. Branicky, Oct 14 2021

Formula

a(n) = A073484(A007947(n)).
a(A000040(n))=0; a(A000961(n))=0; a(A006094(n))=0; a(A002110(n))=0; a(A073485(n))=0.
a(A073486(n))>0; a(A073487(n)) = 1; a(A073488(n))=2; a(A073489(n))=3.
a(n)=0 iff A073483(n) = 1.
a(A097889(n)) = 0. - Reinhard Zumkeller, Nov 20 2004
0 <= a(m*n) <= a(m) + a(n) + 1. A137794(n) = 0^a(n). - Reinhard Zumkeller, Feb 11 2008

Extensions

More terms from Franklin T. Adams-Watters, May 19 2006

A096342 Primes of the form p*q + p + q, where p and q are two successive primes.

Original entry on oeis.org

11, 23, 47, 167, 251, 359, 479, 719, 1847, 2111, 2591, 3719, 6719, 7559, 8819, 10607, 12539, 14591, 19319, 27551, 29231, 31319, 51071, 53819, 68111, 97967, 149759, 155219, 172199, 177239, 195359, 199799, 234239, 273527, 305783, 314711, 339863
Offset: 1

Views

Author

Giovanni Teofilatto, Jun 29 2004

Keywords

Comments

a(n) == 3 mod 4.
Primes arising in A126148. - Jonathan Vos Post, Mar 08 2007
Number of primes <10^n: 0, 3, 8, 15, 26, 49, 99, 220, 514, 1228, 2991, 7746, 20218, 54081, ..., . - Robert G. Wilson v

Examples

			a(4)=167 because 11*13 + 11 + 13=167.
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[p = Prime[n]Prime[n + 1] + Prime[n] + Prime[n + 1]; If[ PrimeQ[p], AppendTo[a, p]], {n, 110}]; a (* Robert G. Wilson v, Jul 01 2004 *)
    Select[Times@@#+Total[#]&/@Partition[Prime[Range[200]],2,1],PrimeQ] (* Harvey P. Dale, Nov 25 2018 *)
  • PARI
    list(lim)=my(v=List(),p=2,t); forprime(q=3,, t=p*q+p+q; if (t>lim, return(Set(v))); if(isprime(t), listput(v,t)); p=q) \\ Charles R Greathouse IV, Sep 15 2015

Extensions

More terms from Robert G. Wilson v, Jul 02 2004

A166469 Number of divisors of n which are not multiples of consecutive primes.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 4, 2, 4, 2, 4, 3, 5, 2, 4, 2, 6, 4, 4, 2, 5, 3, 4, 4, 6, 2, 5, 2, 6, 4, 4, 3, 5, 2, 4, 4, 8, 2, 6, 2, 6, 4, 4, 2, 6, 3, 6, 4, 6, 2, 5, 4, 8, 4, 4, 2, 7, 2, 4, 6, 7, 4, 6, 2, 6, 4, 6, 2, 6, 2, 4, 4, 6, 3, 6, 2, 10, 5, 4, 2, 8, 4, 4, 4, 8, 2, 6, 4, 6, 4, 4, 4, 7, 2, 6, 6, 9, 2, 6, 2, 8, 5
Offset: 1

Views

Author

Matthew Vandermast, Nov 05 2009

Keywords

Comments

Links various subsequences of A025487 with an unusual number of important sequences, including the Fibonacci, Lucas, and other generalized Fibonacci sequences (see cross-references).
If a number is a product of any number of consecutive primes, the number of its divisors which are not multiples of n consecutive primes is always a Fibonacci n-step number. See also A073485, A167447.

Examples

			Since 3 of 30's 8 divisors (6, 15, and 30) are multiples of 2 or more consecutive primes, a(30) = 8 - 3 = 5.
		

Crossrefs

A(A002110(n)) = A000045(n+2); A(A097250(n)) = A000032(n+1). For more relationships involving Fibonacci and Lucas numbers, see A166470-A166473, comment on A081341.
A(A061742(n)) = A001045(n+2); A(A006939(n)) = A000085(n+1); A(A212170(n)) = A000142(n+1). A(A066120(n)) = A166474(n+1).

Programs

  • Mathematica
    Array[DivisorSum[#, 1 &, FreeQ[Differences@ PrimePi@ FactorInteger[#][[All, 1]], 1] &] &, 105] (* Michael De Vlieger, Dec 16 2017 *)
  • PARI
    A296210(n) = { if(1==n,return(0)); my(ps=factor(n)[,1], pis=vector(length(ps),i,primepi(ps[i])), diffsminusones = vector(length(pis)-1,i,(pis[i+1]-pis[i])-1)); !factorback(diffsminusones); };
    A166469(n) = sumdiv(n,d,!A296210(d)); \\ Antti Karttunen, Dec 15 2017

Formula

a) If n has no prime gaps in its factorization (cf. A073491), then, if the canonical factorization of n into prime powers is the product of p_i^(e_i), a(n) is the sum of all products of one or more nonadjacent exponents, plus 1. For example, if A001221(n) = 3, a(n) = e_1*e_3 + e_1 + e_2 + e_3 + 1. If A001221(n) = k, the total number of terms always equals A000045(k+2).
The answer can also be computed in k steps, by finding the answers for the products of the first i powers, for i = 1 to i = k. Let the result of the i-th step be called r(i). r(1) = e_1 + 1; r(2) = e_1 + e_2 +1; for i > 2, r(i) = r(i-1) + e_i * r(i-2).
b) If n has prime gaps in its factorization, express it as a product of the minimum number of A073491's members possible. Then apply either of the above methods to each of those members, and multiply the results to get a(n). a(n) = A000005(n) iff n has no pair of consecutive primes as divisors.
a(n) = Sum_{d|n} (1-A296210(d)). - Antti Karttunen, Dec 15 2017

Extensions

Edited by Matthew Vandermast, May 24 2012

A242378 Square array read by antidiagonals: to obtain A(i,j), replace each prime factor prime(k) in prime factorization of j with prime(k+i).

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 5, 5, 1, 0, 5, 9, 7, 7, 1, 0, 6, 7, 25, 11, 11, 1, 0, 7, 15, 11, 49, 13, 13, 1, 0, 8, 11, 35, 13, 121, 17, 17, 1, 0, 9, 27, 13, 77, 17, 169, 19, 19, 1, 0, 10, 25, 125, 17, 143, 19, 289, 23, 23, 1, 0, 11, 21, 49, 343, 19, 221, 23, 361, 29, 29, 1, 0
Offset: 0

Views

Author

Antti Karttunen, May 12 2014

Keywords

Comments

Each row i is a multiplicative function, being in essence "the i-th power" of A003961, i.e., A(i,j) = A003961^i (j). Zeroth power gives an identity function, A001477, which occurs as the row zero.
The terms in the same column have the same prime signature.
The array is read by antidiagonals: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ... .

Examples

			The top-left corner of the array:
  0,   1,   2,   3,   4,   5,   6,   7,   8, ...
  0,   1,   3,   5,   9,   7,  15,  11,  27, ...
  0,   1,   5,   7,  25,  11,  35,  13, 125, ...
  0,   1,   7,  11,  49,  13,  77,  17, 343, ...
  0,   1,  11,  13, 121,  17, 143,  19,1331, ...
  0,   1,  13,  17, 169,  19, 221,  23,2197, ...
...
A(2,6) = A003961(A003961(6)) = p_{1+2} * p_{2+2} = p_3 * p_4 = 5 * 7 = 35, because 6 = 2*3 = p_1 * p_2.
		

Crossrefs

Taking every second column from column 2 onward gives array A246278 which is a permutation of natural numbers larger than 1.
Transpose: A242379.
Row 0: A001477, Row 1: A003961 (from 1 onward), Row 2: A357852 (from 1 onward), Row 3: A045968 (from 7 onward), Row 4: A045970 (from 11 onward).
Column 2: A000040 (primes), Column 3: A065091 (odd primes), Column 4: A001248 (squares of primes), Column 6: A006094 (products of two successive primes), Column 8: A030078 (cubes of primes).
Excluding column 0, a subtable of A297845.
Permutations whose formulas refer to this array: A122111, A241909, A242415, A242419, A246676, A246678, A246684.

Formula

A(0,j) = j, A(i,0) = 0, A(i > 0, j > 0) = A003961(A(i-1,j)).
For j > 0, A(i,j) = A297845(A000040(i+1),j) = A297845(j,A000040(i+1)). - Peter Munn, Sep 02 2025

A256617 Numbers having exactly two distinct prime factors, which are also adjacent prime numbers.

Original entry on oeis.org

6, 12, 15, 18, 24, 35, 36, 45, 48, 54, 72, 75, 77, 96, 108, 135, 143, 144, 162, 175, 192, 216, 221, 225, 245, 288, 323, 324, 375, 384, 405, 432, 437, 486, 539, 576, 648, 667, 675, 768, 847, 864, 875, 899, 972, 1125, 1147, 1152, 1215, 1225, 1296, 1458, 1517, 1536, 1573, 1715, 1728, 1763, 1859, 1875, 1944
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 05 2015

Keywords

Examples

			.   n | a(n)                      n | a(n)
. ----+------------------       ----+------------------
.   1 |   6 = 2 * 3              13 |  77 = 7 * 11
.   2 |  12 = 2^2 * 3            14 |  96 = 2^5 * 3
.   3 |  15 = 3 * 5              15 | 108 = 2^2 * 3^3
.   4 |  18 = 2 * 3^2            16 | 135 = 3^3 * 5
.   5 |  24 = 2^3 * 3            17 | 143 = 11 * 13
.   6 |  35 = 5 * 7              18 | 144 = 2^4 * 3^2
.   7 |  36 = 2^2 * 3^2          19 | 162 = 2 * 3^4
.   8 |  45 = 3^2 * 5            20 | 175 = 5^2 * 7
.   9 |  48 = 2^4 * 3            21 | 192 = 2^6 * 3
.  10 |  54 = 2 * 3^3            22 | 216 = 2^3 * 3^3
.  11 |  72 = 2^3 * 3^2          23 | 221 = 13 * 17
.  12 |  75 = 3 * 5^2            24 | 225 = 3^2 * 5^2 .
		

Crossrefs

Subsequence of A007774.
Subsequences: A006094, A033845, A033849, A033851.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a256617 n = a256617_list !! (n-1)
    a256617_list = f (singleton (6, 2, 3)) $ tail a000040_list where
       f s ps@(p : ps'@(p':_))
         | m < p * p' = m : f (insert (m * q, q, q')
                              (insert (m * q', q, q') s')) ps
         | otherwise  = f (insert (p * p', p, p') s) ps'
         where ((m, q, q'), s') = deleteFindMin s
    
  • Mathematica
    Select[Range[2000], MatchQ[FactorInteger[#], {{p_, }, {q, }} /; q == NextPrime[p]]&] (* _Jean-François Alcover, Dec 31 2017 *)
  • PARI
    is(n) = if(omega(n)!=2, return(0), my(f=factor(n)[, 1]~); if(f[2]==nextprime(f[1]+1), return(1))); 0 \\ Felix Fröhlich, Dec 31 2017
    
  • PARI
    list(lim)=my(v=List(),c=sqrtnint(lim\=1,3),d=nextprime(c+1),p=2); forprime(q=3,d, for(i=1,logint(lim\q,p), my(t=p^i); while((t*=q)<=lim, listput(v,t))); p=q); forprime(q=d+1,lim\precprime(sqrtint(lim)), listput(v,p*q); p=q); Set(v) \\ Charles R Greathouse IV, Apr 12 2020
    
  • Python
    from sympy import primefactors, nextprime
    A256617_list = []
    for n in range(1,10**5):
        plist = primefactors(n)
        if len(plist) == 2 and plist[1] == nextprime(plist[0]):
            A256617_list.append(n) # Chai Wah Wu, Aug 23 2021

Formula

A001222(a(n)) = 2.
A006530(a(n)) = A151800(A020639(n)) = A000040(A049084(A020639(a(n)))+1).
Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/A083553(n) = Sum_{n>=1} 1/((prime(n)-1)*(prime(n+1)-1)) = 0.7126073495... - Amiram Eldar, Dec 23 2020

A339116 Triangle of all squarefree semiprimes grouped by greater prime factor, read by rows.

Original entry on oeis.org

6, 10, 15, 14, 21, 35, 22, 33, 55, 77, 26, 39, 65, 91, 143, 34, 51, 85, 119, 187, 221, 38, 57, 95, 133, 209, 247, 323, 46, 69, 115, 161, 253, 299, 391, 437, 58, 87, 145, 203, 319, 377, 493, 551, 667, 62, 93, 155, 217, 341, 403, 527, 589, 713, 899
Offset: 2

Views

Author

Gus Wiseman, Dec 01 2020

Keywords

Comments

A squarefree semiprime is a product of any two distinct prime numbers.

Examples

			Triangle begins:
   6
  10  15
  14  21  35
  22  33  55  77
  26  39  65  91 143
  34  51  85 119 187 221
  38  57  95 133 209 247 323
  46  69 115 161 253 299 391 437
  58  87 145 203 319 377 493 551 667
  62  93 155 217 341 403 527 589 713 899
		

Crossrefs

A339194 gives row sums.
A100484 is column k = 1.
A001748 is column k = 2.
A001750 is column k = 3.
A006094 is column k = n - 1.
A090076 is column k = n - 2.
A319613 is the central column k = 2*n.
A087112 is the not necessarily squarefree version.
A338905 is a different triangle of squarefree semiprimes.
A339195 is the generalization to all squarefree numbers, row sums A339360.
A001358 lists semiprimes.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd terms A046388.
A024697 is the sum of semiprimes of weight n.
A025129 is the sum of squarefree semiprimes of weight n.
A332765 gives the greatest squarefree semiprime of weight n.
A338898/A338912/A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338904 groups semiprimes by weight.
A338907/A338908 list squarefree semiprimes of odd/even weight.
Subsequence of A019565.

Programs

  • Mathematica
    Table[Prime[i]*Prime[j],{i,2,10},{j,i-1}]
  • PARI
    row(n) = {prime(n)*primes(n-1)}
    { for(n=2, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023

Formula

T(n,k) = prime(n) * prime(k) for k < n.

Extensions

Offset corrected by Andrew Howroyd, Jan 19 2023

A127345 a(n) = pq + pr + qr with p = prime(n), q = prime(n+1), and r = prime(n+2).

Original entry on oeis.org

31, 71, 167, 311, 551, 791, 1151, 1655, 2279, 3119, 3935, 4871, 5711, 6791, 8391, 9959, 11639, 13175, 14831, 16559, 18383, 20975, 24071, 27419, 30191, 32231, 33911, 36071, 40511, 45791, 51983, 55199, 60167, 64199, 69599, 73911, 79031, 84311
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2007

Keywords

Comments

a(n) = coefficient of x^1 of the polynomial Product_{j=0..2} (x-prime(n+j)) of degree 3; the roots of this polynomial are prime(n), ..., prime(n+2); cf. Vieta's formulas.
Arithmetic derivative (see A003415) of prime(n)*prime(n+1)*prime(n+2). [Giorgio Balzarotti, May 26 2011]

Crossrefs

Programs

  • Mathematica
    Table[Prime[n]*Prime[n+1] + Prime[n]*Prime[n+2] + Prime[n+1]*Prime[n+2], {n, 100}]
    Total[Times@@@Subsets[#,{2}]]&/@Partition[Prime[Range[40]],3,1] (* Harvey P. Dale, Sep 11 2017 *)
  • PARI
    {m=38;k=2;for(n=1,m,print1(sum(i=n,n+k-1,sum(j=i+1,n+k,prime(i)*prime(j))),","))} \\ Klaus Brockhaus, Jan 21 2007
    
  • PARI
    {m=38;k=2;for(n=1,m,print1(polcoeff(prod(j=0,k,(x-prime(n+j))),1),","))} \\ Klaus Brockhaus, Jan 21 2007
    
  • PARI
    p=2;q=3;forprime(r=5,1e3,print1(p*q+p*r+q*r", ");p=q;q=r) \\ Charles R Greathouse IV, Jan 13 2012

Extensions

Edited by Klaus Brockhaus, Jan 21 2007
Previous Showing 31-40 of 145 results. Next