cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 52 results. Next

A266505 a(n) = 2*a(n - 2) + a(n - 4) with a(0) = -1, a(1) = 1, a(2) = 3, a(3) = 5.

Original entry on oeis.org

-1, 1, 3, 5, 5, 11, 13, 27, 31, 65, 75, 157, 181, 379, 437, 915, 1055, 2209, 2547, 5333, 6149, 12875, 14845, 31083, 35839, 75041, 86523, 181165, 208885, 437371, 504293, 1055907, 1217471, 2549185, 2939235, 6154277, 7095941, 14857739, 17131117, 35869755, 41358175, 86597249, 99847467
Offset: 0

Views

Author

Raphie Frank, Dec 30 2015

Keywords

Comments

a(n)/A266504(n) converges to sqrt(2).
Alternatively, bisection of A266506.
Alternatively, A135532(n) and A048655(n) interlaced.
Alternatively, A255236(n-1), A054490(n), A038762(n) and A101386(n) interlaced.
Let b(n) = (a(n) - (a(n) mod 2))/2, that is b(n) = {-1, 0, 1, 2, 2, 5, 6, 13, 15, 32, 37, 78, 90, ...}. Then:
A006451(n) = {b(4n+0) U b(4n+1)} gives n in N such that triangular(n) + 1 is square;
A216134(n) = {b(4n+2) U b(4n+3)} gives n in N such that triangular(n) follows form n^2 + n + 1 (twice a triangular number + 1).

Crossrefs

Programs

  • Magma
    I:=[-1,1,3,5]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
    
  • Maple
    a:=proc(n) option remember; if n=0 then -1 elif n=1 then 1 elif n=2 then 3 elif n=3 then 5 else 2*a(n-2)+a(n-4); fi; end:  seq(a(n), n=0..50); # Wesley Ivan Hurt, Jan 01 2016
  • Mathematica
    LinearRecurrence[{0, 2, 0, 1}, {-1, 1, 3, 5}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
    Table[SeriesCoefficient[(-1 + 3 x) (1 + x)^2/(1 - 2 x^2 - x^4), {x, 0, n}], {n, 0, 42}] (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    my(x='x+O('x^40)); Vec((-1+3*x)*(1+x)^2/(1-2*x^2-x^4)) \\ G. C. Greubel, Jul 26 2018

Formula

G.f.: (-1 + 3*x)*(1 + x)^2/(1 - 2*x^2 - x^4).
a(n) = (-(1+sqrt(2))^floor(n/2)*(-1)^n - sqrt(8)*(1-sqrt(2))^floor(n/2) - (1-sqrt(2))^floor(n/2)*(-1)^n + sqrt(8)*(1+sqrt(2))^floor(n/2))/2.
a(n) = 3*(((1+sqrt(2))^floor(n/2)-(1-sqrt(2))^floor(n/2))/sqrt(8)) - (-1)^n*(((1+sqrt(2))^(floor(n/2)-(-1)^n)-(1-sqrt(2))^(floor(n/2)-(-1)^n))/sqrt(8)).
a(n) = (3*A000129(floor(n/2)) - A000129(n-(-1)^n)), where A000129 gives the Pell numbers.
a(n) = sqrt(2*A266504(n)^2 - 7*(-1)^A266504(n))*sgn(2*n-1), where A266504 gives all x in N such that 2*x^2 - 7*(-1)^x = y^2. This sequence gives associated y values.
a(2n) = (-(1 + sqrt(2))^n - sqrt(8)*(1 - sqrt(2))^n - (1 - sqrt(2))^n + sqrt(8)*(1 + sqrt(2))^n)/2 = a(2n) = A135532(n).
a(2n) = 3*(((1+sqrt(2))^n-(1-sqrt(2))^n)/sqrt(8)) - (((1+sqrt(2))^(n-1)-(1-sqrt(2))^(n-1))/sqrt(8)) = A135532(n).
a(2n+1) = (+(1 + sqrt(2))^n - sqrt(8)*(1 - sqrt(2))^n + (1 - sqrt(2))^n + sqrt(8)*(1 + sqrt(2))^n)/2 = a(2n + 1) = A048655(n).
a(2n+1) = 3*(((1+sqrt(2))^n-(1-sqrt(2))^n)/sqrt(8)) + (((1+sqrt(2))^(n+1)-(1-sqrt(2))^(n+1))/sqrt(8)) = A048655(n).
a(4n + 0) = 6*a(4n - 4) - a(4n - 8) = A255236(n-1).
a(4n + 1) = 6*a(4n - 3) - a(4n - 7) = A054490(n).
a(4n + 2) = 6*a(4n - 2) - a(4n - 6) = A038762(n).
a(4n + 3) = 6*a(4n - 1) - a(4n - 5) = A101386(n).
(sqrt(2*(a(2n + 1) )^2 + 14*(-1)^floor(n/2)))/2 = A266504(n).
(a(2n + 1) + a(2n))/8 = A000129(n), where A000129 gives the Pell numbers.
a(2n + 1) - a(2n) = A002203(n), where A002203 gives the companion Pell numbers.
(a(2n + 2) + a(2n + 1))/2 = A000129(n+2).
(a(2n + 2) - a(2n + 1))/2 = A000129(n-1).

A154152 Indices k such that 26 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

4, 10, 37, 67, 220, 394, 1285, 2299, 7492, 13402, 43669, 78115, 254524, 455290, 1483477, 2653627, 8646340, 15466474, 50394565, 90145219, 293721052, 525404842, 1711931749, 3062283835, 9977869444, 17848298170, 58155284917, 104027505187, 338953840060
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			4*(4+1)/2+26 = 6^2. 10*(10+1)/2+26 = 9^2. 37*(37+1)/2+26 = 27^2. 67*(67+1)/2+26 = 48^2.
		

Crossrefs

Programs

  • Mathematica
    Join[{4, 10}, Select[Range[0,10^5], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 26 &]] (* or *) LinearRecurrence[{1,6,-6,-1,1}, {4,10,37,67,220}, 25] (* G. C. Greubel, Sep 03 2016 *)
  • PARI
    Vec(x*(-4-6*x-3*x^2+6*x^3+5*x^4)/((x-1)*(x^2-2*x-1)*(x^2+2*x-1)) + O(x^40)) \\ Colin Barker, Jul 11 2015

Formula

{k: 26+k*(k+1)/2 in A000290}.
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(-4-6*x-3*x^2+6*x^3+5*x^4)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).
G.f.: ( 10 + (-3-6*x)/(x^2+2*x-1) + 1/(x-1) + (12+27*x)/(x^2-2*x-1) )/2.

Extensions

Extended by D. S. McNeil, Dec 05 2010

A166259 Positive integers n such that a centered polygonal number n*k*(k+1)/2+1 is not a square for any k > 0.

Original entry on oeis.org

2, 18, 32, 50, 72, 98, 128, 162, 200, 242, 338, 392, 450, 512, 578, 648, 722, 882, 968, 1058, 1152, 1250, 1352, 1458, 1682, 1800, 1922, 2048, 2178, 2312, 2401, 2450, 2662, 2738, 2809, 2888, 3042, 3174, 3200, 3362, 3528, 3698, 3750, 4050, 4225, 4232, 4418, 4489, 4608, 4802
Offset: 1

Views

Author

Alexander Adamchuk, Oct 10 2009

Keywords

Comments

Positive integers n such that A120744(n) = -1.

Crossrefs

Extensions

Edited and extended by Max Alekseyev, Jan 20 2010

A175032 a(n) is the difference between the n-th triangular number and the next perfect square.

Original entry on oeis.org

0, 0, 1, 3, 6, 1, 4, 8, 0, 4, 9, 15, 3, 9, 16, 1, 8, 16, 25, 6, 15, 25, 3, 13, 24, 36, 10, 22, 35, 6, 19, 33, 1, 15, 30, 46, 10, 26, 43, 4, 21, 39, 58, 15, 34, 54, 8, 28, 49, 0, 21, 43, 66, 13, 36, 60, 4, 28, 53, 79, 19, 45, 72, 9, 36, 64, 93, 26, 55, 85, 15, 45, 76, 3, 34, 66, 99, 22
Offset: 0

Views

Author

Ctibor O. Zizka, Nov 09 2009

Keywords

Comments

All terms are from {0} U A175035. No terms are from A175034.
The sequence consists of ascending runs of length 3 or 4. The first run starts at n = 1 and thereafter the k-th run starts at n = A214858(k - 1). - John Tyler Rascoe, Nov 05 2022

Crossrefs

Cf. sequences where a(m)=k: A001108 (0), A006451 (1), A154138 (3), A154139 (4), A154140 (6), A154141 (8), A154142 (9), A154143 (10), A154144 (13), A154145 (15), A154146 (16), A154147 (19), A154148 (21), A154149 (22), A154150(24), A154151 (25), A154151 (26), A154153(28), A154154 (30).

Programs

  • Mathematica
    Ceiling[Sqrt[#]]^2-#&/@Accumulate[Range[0,80]] (* Harvey P. Dale, Aug 25 2013 *)
  • PARI
    a(n) = my(t=n*(n+1)/2); if (issquare(t), 0, (sqrtint(t)+1)^2 - t); \\ Michel Marcus, Nov 06 2022

Formula

a(n) = (ceiling(sqrt(n*(n+1)/2)))^2 - n*(n+1)/2. - Ctibor O. Zizka, Nov 09 2009
a(n) = A080819(n) - A000217(n). - R. J. Mathar, Aug 24 2010

Extensions

Erroneous formula variant deleted and offset set to zero by R. J. Mathar, Aug 24 2010

A175034 Offsets i such that i + n*(n+1)/2 is never a perfect square for any n>0.

Original entry on oeis.org

2, 5, 7, 11, 12, 14, 17, 18, 20, 23, 27, 29, 31, 32, 37, 38, 40, 41, 42, 44, 47, 50, 51, 52, 56, 57, 59, 62, 65, 67, 68, 69, 70, 73, 74, 77, 82, 83, 84, 86, 87, 88, 92, 95, 96, 98, 101, 102, 104, 107, 109, 110, 112, 113, 117, 119, 122, 125, 126, 127, 128, 131, 132, 135, 137, 139
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 10 2009

Keywords

Comments

Complement of A175035.

Crossrefs

Extensions

Extended by R. J. Mathar, Nov 26 2009

A229083 Numbers k such that the distance between the k-th triangular number and the nearest square is at most 1.

Original entry on oeis.org

1, 2, 4, 5, 8, 15, 25, 32, 49, 90, 148, 189, 288, 527, 865, 1104, 1681, 3074, 5044, 6437, 9800, 17919, 29401, 37520, 57121, 104442, 171364, 218685, 332928, 608735, 998785, 1274592, 1940449, 3547970, 5821348, 7428869, 11309768, 20679087, 33929305, 43298624, 65918161
Offset: 1

Views

Author

Ralf Stephan, Sep 13 2013

Keywords

Comments

The k-th triangular number (A000217) is a square, or a square plus or minus one.
Union of A006451 (k-th triangular number is a square minus one), A072221 (k-th triangular number is a square plus one), and A001108 (k-th triangular number is square). Also, union of A229131 and A001108.

Examples

			A000217(4) = 10 and 10 - 3^2 = 1 so 4 is in the sequence.
A000217(5) = 15 and 4^2 - 15 = 1 so 5 is in the sequence.
A000217(8) = 36 = 6^2 so 8 is in sequence.
		

Crossrefs

Programs

  • PARI
    for(n=1,10^8,for(i=-1,1,f=0;if(issquare(n*(n+1)/2+i),f=1;break));if(f,print1(n,",")))

Formula

G.f.: (x^7 - 2*x^6 + x^5 - 3*x^4 + x^3 + 2*x^2 + x + 1)/((1-2*x^2+x^4)*(1-2*x^2-x^4)*(1-x)) (conjectured).

A160970 Indices of square numbers that are also 18-gonal numbers.

Original entry on oeis.org

0, 1, 10, 44, 341, 1495, 11584, 50786, 393515, 1725229, 13367926, 58607000, 454115969, 1990912771, 15426575020, 67632427214, 524049434711, 2297511612505, 17802254205154, 78047762397956, 604752593540525, 2651326409917999, 20543785926172696, 90067050174814010
Offset: 1

Views

Author

Sture Sjöstedt, Jun 01 2009, Jul 02 2009

Keywords

Comments

Solving the Diophantine equation A051870(m) = m*(8*m-7) = k^2 leads to the entries.
k in the sequence and a list of associated m = 0, 1, 4, 16, 121, 529, 4096, 17956, 139129, 609961...

Crossrefs

Programs

  • Mathematica
    Join[{0},LinearRecurrence[{0,34,0,-1},{1,10,44,340},23]] (* Ray Chandler, Aug 01 2015 *)
  • PARI
    is(n)=ispolygonal(n^2,18) \\ Charles R Greathouse IV, Feb 14 2013
    
  • PARI
    concat(0, Vec(x^2*(x+1)*(x^2+9*x+1)/((x^2-6*x+1)*(x^2+6*x+1)) + O(x^50))) \\ Colin Barker, Jun 24 2015

Formula

a(n) = 34*a(n-2) - a(n-4), n>5. - R. J. Mathar, Oct 04 2009
G.f.: x^2*(x+1)*(x^2 + 9*x + 1)/((x^2 - 6*x + 1)*(x^2 + 6*x + 1)). - Colin Barker, Oct 07 2012
For all values excepting the leading 0, a(n) = sqrt(8*A006452(n)^2 - 7)*A006452(n) = sqrt(A006451(n-1)*(A006451(n-1) + 1)/2 + 1)*(2*A006451(n-1) + 1). - Raphie Frank, Feb 11 2013

Extensions

0 added in front and extended by R. J. Mathar, Oct 04 2009

A173202 Solutions y of the Mordell equation y^2 = x^3 - 3a^2 + 1 for a = 0,1,2, ... (solutions x are given by the sequence A000466).

Original entry on oeis.org

0, 5, 58, 207, 500, 985, 1710, 2723, 4072, 5805, 7970, 10615, 13788, 17537, 21910, 26955, 32720, 39253, 46602, 54815, 63940, 74025, 85118, 97267, 110520, 124925, 140530, 157383, 175532, 195025, 215910, 238235, 262048, 287397, 314330, 342895
Offset: 1

Views

Author

Michel Lagneau, Feb 12 2010

Keywords

Comments

For many values of k for the equation y^2 = x^3 + k, all the solutions are known. For example, we have solutions for k=-2: (x,y) = (3,-5) and (3,5). A complete resolution for all integers k is unknown. Theorem: Let k be < -1, free of square factors, with k == 2 or 3 (mod 4). Suppose that the number of classes h(Q(sqrt(k))) is not divisible by 3. Then the equation y^2 = x^3 + k admits integer solutions if and only if k = 1 - 3a^2 or 1 - 3a^2 where a is an integer. In this case, the solutions are x = a^2 - k, y = a(a^2 + 3k) or -a(a^2 + 3k) (the first reference gives the proof of this theorem). With k = -1 - 3a^2, we obtain the solutions x = 4a^2 + 1, y = a(8a^2 + 3) or -a(8a^2 + 3). For the case k = 1 - 3a^2, we obtain the solution x = 4a^2 - 1 given by the sequence A000466.

Examples

			With a=3, x = 35 and y = 207, and then 207^2 = 35^2 - 26.
		

References

  • T. Apostol, Introduction to Analytic Number Theory, Springer, 1976
  • D. Duverney, Theorie des nombres (2e edition), Dunod, 2007, p.151

Crossrefs

Diophantine equations: see also Pellian equation: (A081233, A081234), (A081231, A082394), (A081232, A082393); Mordell equation: A053755, A173200; Diophantine equations: A006452, A006451, A006454.

Programs

  • Magma
    I:=[0, 5, 58, 207]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 02 2012
  • Maple
    for a from 0 to 100 do : z := evalf(a*(8*a^2 - 3)) : print (z) :od :
  • Mathematica
    CoefficientList[Series[x*(5+38*x+5*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 02 2012 *)
    CoefficientList[Series[E^x (5 x + 24 x^2 + 8 x^3), {x, 0, 40}], x]*Table[n!, {n, 0, 40}] (* Stefano Spezia, Dec 04 2018 *)

Formula

y = a*(8*a^2 - 3).
a(n) = sqrt(A000466(n)^3 - A080663(n)). - Artur Jasinski, Nov 26 2011
From Colin Barker, Apr 26 2012: (Start)
a(n) = 8*n^3 - 24*n^2 + 21*n - 5.
G.f.: x^2*(5 + 38*x + 5*x^2)/(1 - x)^4. (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 02 2012
E.g.f.: exp(x)*(5*x + 24*x^2 + 8*x^3). - Stefano Spezia, Dec 04 2018

A175492 Numbers m >= 3 such that binomial(m,3) + 1 is a square.

Original entry on oeis.org

7, 10, 24, 26, 65, 13777
Offset: 1

Views

Author

Ctibor O. Zizka, May 29 2010

Keywords

Comments

Related sequences:
Numbers m such that binomial(m,2) is a square: A055997;
Numbers m such that binomial(m,2) + 1 is a square: A006451 + 1;
Numbers m such that binomial(m,2) - 1 is a square: A072221 + 1;
Numbers m >= 3 such that binomial(m,3) is a square: {3, 4, 50} (Proved by A. J. Meyl in 1878);
Numbers m >= 4 such that binomial(m,4) + 1 is a square: {6, 7, 45, 55, ...};
Numbers m >= 7 such that binomial(m,7) + 1 is a square: {8, 10, 21, 143, ...}.
No additional terms up to 10 million. - Harvey P. Dale, Apr 04 2017
No additional terms up to 10 billion. - Jon E. Schoenfield, Mar 18 2022
No additional terms up to 1 trillion. The sequence is finite by Siegel's theorem on integral points. - David Radcliffe, Jan 01 2024

Crossrefs

Cf. A216268 (values of binomial(m, 3)) and A216269 (square roots of binomial(m, 3) + 1).

Programs

  • Mathematica
    lst = {}; k = 3; While[k < 10^6, If[ IntegerQ@ Sqrt[ Binomial[k, 3] + 1], AppendTo[lst, k]]; k++ ]; lst (* Robert G. Wilson v, Jun 11 2010 *)
    Select[Range[3,14000],IntegerQ[Sqrt[Binomial[#,3]+1]]&] (* Harvey P. Dale, Apr 04 2017 *)
  • PARI
    isok(m) = (m>=3) && issquare(binomial(m,3)+1); \\ Michel Marcus, Mar 15 2022
    
  • Python
    from sympy import binomial
    from sympy.ntheory.primetest import is_square
    for m in range(3, 10**6):
        if is_square(binomial(m,3)+1):
            print(m) # Mohammed Yaseen, Mar 18 2022

A229081 Numbers n such that there exists a square m^2 with 3n^2 - n <= m^2 <= 3n^2 + n.

Original entry on oeis.org

1, 3, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 22, 23, 26, 27, 29, 30, 33, 34, 37, 38, 40, 41, 42, 44, 45, 48, 49, 52, 53, 55, 56, 57, 59, 60, 63, 64, 67, 68, 70, 71, 74, 75, 78, 79, 82, 83, 85, 86, 89, 90, 93, 94, 96, 97, 98, 100, 101, 104, 105, 108, 109, 111, 112, 113, 115, 116, 119, 120, 123, 124, 126
Offset: 1

Views

Author

Ralf Stephan, Sep 13 2013

Keywords

Examples

			There is a square between 3*4^2-4 and 3*4^2+4 (44<=49<=52) but not between 3*5^2-5=70 and 3*5^2+5=80, so 4 is in sequence but not 5.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..130] | exists{3*n^2+i: i in [-n..n] | IsSquare(3*n^2+i)}]; // Bruno Berselli, Sep 13 2013
  • Maple
    filter:= n -> ceil(sqrt(3*n^2-n))<=floor(sqrt(3*n^2+n)):
    select(filter, [$1..200]); # Robert Israel, Jan 05 2020
  • PARI
    for(n=1,200,for(i=-n,n,f=0;if(issquare(3*n*n+i),f=1;break));if(f,print1(n,",")))
    
Previous Showing 41-50 of 52 results. Next