cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 80 results. Next

A120296 Numerator of Sum_{k=1..n} (-1)^(k+1)/k^4.

Original entry on oeis.org

1, 15, 1231, 19615, 12280111, 4090037, 9824498837, 157151464517, 38193952437631, 7637983935923, 111835788321880643, 111830093529238643, 3194097388508809394723, 3194009594644356242723, 15970381078317764649391
Offset: 1

Views

Author

Alexander Adamchuk, Jul 10 2006

Keywords

Comments

p divides a(p-1) for prime p > 2 - similar to Wolstenholme's theorem for A007406(n) (= numerator of Sum_{k=1..n} 1/k^2) and for A007410(n) (= numerator of Sum_{k=1..n} 1/k^4).
Lim_{n -> infinity} a(n)/A334585(n) = A267315 = (7/8)*A013662. - Petros Hadjicostas, May 07 2020

Examples

			The first few fractions are 1, 15/16, 1231/1296, 19615/20736, 12280111/12960000, 4090037/4320000, 9824498837/10372320000, ... = A120296/A334585. - _Petros Hadjicostas_, May 06 2020
		

Crossrefs

Cf. A007406, A007410, A013662, A119682, A267315, A334585 (denominators).

Programs

  • Mathematica
    Numerator[Table[Sum[(-1)^(k+1)/k^4,{k,1,n}],{n,1,20}]]
  • PARI
    a(n) = numerator(sum(k=1, n, (-1)^(k+1)/k^4)); \\ Michel Marcus, May 07 2020

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/k^4).

Extensions

Name edited by Petros Hadjicostas, May 07 2020

A010763 a(n) = binomial(2n+1, n+1) - 1.

Original entry on oeis.org

0, 2, 9, 34, 125, 461, 1715, 6434, 24309, 92377, 352715, 1352077, 5200299, 20058299, 77558759, 300540194, 1166803109, 4537567649, 17672631899, 68923264409, 269128937219, 1052049481859, 4116715363799, 16123801841549, 63205303218875, 247959266474051
Offset: 0

Views

Author

Keywords

Comments

(With a different offset:) p divides a(p) for prime p. p^2 divides a(p) for prime p > 2. p^3 divides a(p) for prime p > 3 (implied by Wolstenholme's theorem). Wolstenholme's quotients are listed in A034602(n) = a(prime(n))/prime(n)^3 = {1, 5, 265, 2367, 237493, 2576561, 338350897, ...} = a(p)/p^3 for prime p > 3. p^3 divides a(p^k) for prime p > 3 and integer k > 0. Primes in a(n) are listed in A112862(n) = {2, 461, 92377, 269128937219, ...} Primes of the form (2*n)!/(2*(n!)^2) - 1. Numbers n such that a(n) is prime are listed in A112861(n) = {2, 6, 10, 21, 45, 63, 306, 404, 437, 471, 646, ...}. - Alexander Adamchuk, Jan 05 2007
a(n-1) is the number of weak compositions of n into n parts in which at least one part is zero. a(3)=34 since 4 can be written as 4+0+0+0 (4 such compositions); 3+1+0+0 (12 such compositions); 2+2+0+0 (6 such compositions); 2+1+1+0 (12 such compositions). All these weak compositions contain at least one zero. - Enrique Navarrete, Jan 09 2022

Crossrefs

Programs

  • Magma
    [Binomial(2*n-1,n-1)-1: n in [1..30]]; // Vincenzo Librandi, Mar 21 2013
    
  • Maple
    A010763:=n->binomial(2*n+1, n+1) - 1: seq(A010763(n), n=0..30); # Wesley Ivan Hurt, Sep 05 2015
  • Mathematica
    Table[Binomial[2n - 1, n - 1] - 1, {n, 20}] (* Alonso del Arte, Dec 13 2012 *)
    CoefficientList[Series[Exp[2*x]*(BesselI[0,2*x] + BesselI[1,2*x]) - Exp[x], {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Dec 02 2018 *)
  • PARI
    a(n) = binomial(2*n+1, n+1) - 1;
    vector(30, n, a(n-1)) \\ Michel Marcus, Sep 05 2015
    
  • PARI
    first(n) = x='x+O('x^n); Vec((1 - sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)) - 1/(1 - x), -n) \\ Iain Fox, Dec 19 2017 (corrected by Iain Fox, Oct 24 2018)

Formula

a(n) = (n/(2n+2))*Sum_{k = 1..n+1} C(2n+2, k)/C(n+1, k). - Benoit Cloitre, Aug 20 2002
a(n) = Sum_{i = 1..n} C(n + i, n). - Benoit Cloitre, Oct 15 2002
a(n + 1) = C(2n - 1, n - 1) - 1. - Alonso del Arte, Dec 15 2012
From Ilya Gutkovskiy, Feb 07 2017: (Start)
O.g.f.: (1 - sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)) - 1/(1 - x).
E.g.f.: exp(2*x)*(BesselI(0,2*x) + BesselI(1,2*x)) - exp(x). (End)

A120268 Numerator of Sum_{k=1..n} 1/(2*k-1)^2.

Original entry on oeis.org

1, 10, 259, 12916, 117469, 14312974, 2430898831, 487983368, 141433003757, 51174593563322, 51270597630767, 27164483940418988, 3400039831130408821, 30634921277843705014, 25789165074168004597399
Offset: 1

Views

Author

Alexander Adamchuk, Jul 01 2006

Keywords

Comments

a((p-1)/2) is divisible by prime p > 3.
The limit of the rationals r(n) = Sum_{k=1..n} 1/(2*k-1)^2, for n -> infinity, is (Pi^2)/8 = (1 - 1/2^2)*Zeta(2), which is approximately 1.233700550.
r(n) = (Psi(1, 1/2) - Psi(1, n+1/2))/4 for n >= 1, where Psi(n,k) = Polygamma(n,k) is the n-th derivative of the digamma function. Psi(1, 1/2) = 3*Zeta(2) = Pi^2/2. - Jean-François Alcover, Dec 02 2013 [Corrected by Petros Hadjicostas, May 09 2020]

Examples

			Fractions begin: 1, 10/9, 259/225, 12916/11025, 117469/99225, 14312974/12006225, 2430898831/2029052025, 487983368/405810405, ... = A120268/A128492.
		

Crossrefs

Cf. A007406, A025550, A128492 (denominators).

Programs

  • Magma
    [Numerator((&+[1/(2*k-1)^2: k in [1..n]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
  • Mathematica
    Numerator[Table[Sum[1/(2k-1)^2,{k,1,n}],{n,1,25}]]
    Table[(PolyGamma[1, 1/2] - PolyGamma[1, n+1/2])/4 // Numerator, {n, 1, 15}] (* Jean-François Alcover, Dec 02 2013 *)
    Accumulate[1/(2*Range[20]-1)^2]//Numerator (* Harvey P. Dale, Jun 14 2020 *)
  • PARI
    for(n=1,20, print1(numerator(sum(k=1,n, 1/(2*k-1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

Formula

a(n) = numerator( Pi^2/2 - Zeta(2,(2n+1)/2) ) / 4 for n > 0. - Artur Jasinski, Mar 03 2010 [corrected by Bruno Berselli, Dec 02 2013]

A082687 Numerator of Sum_{k=1..n} 1/(n+k).

Original entry on oeis.org

1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 7751493599, 225175759291, 13981692518567, 14000078506967, 98115155543129, 3634060848592973, 3637485804655193
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Comments

Numerator of Sum_{k=0..n-1} 1/((k+1)(2k+1)) (denominator is A111876). - Paul Barry, Aug 19 2005
Numerator of the sum of all matrix elements of n X n Hilbert matrix M(i,j) = 1/(i+j-1) (i,j = 1..n). - Alexander Adamchuk, Apr 11 2006
Numerator of the 2n-th alternating harmonic number H'(2n) = Sum ((-1)^(k+1)/k, k=1..2n). H'(2n) = H(2n) - H(n), where H(n) = Sum_{k=1..n} 1/k is the n-th Harmonic Number. - Alexander Adamchuk, Apr 11 2006
a(n) almost always equals A117731(n) = numerator(n*Sum_{k=1..n} 1/(n+k)) = numerator(Sum_{j=1..n} Sum_{i=1..n} 1/(i+j-1)) but differs for n = 14, 53, 98, 105, 111, 114, 119, 164. - Alexander Adamchuk, Jul 16 2006
Sum_{k=1..n} 1/(n+k) = n!^2 *Sum_{j=1..n} (-1)^(j+1) /((n+j)!(n-j)!j). - Leroy Quet, May 20 2007
Seems to be the denominator of the harmonic mean of the first n hexagonal numbers. - Colin Barker, Nov 19 2014
Numerator of 2*n*binomial(2*n,n)*Sum_{k = 0..n-1} (-1)^k* binomial(n-1,k)/(n+k+1)^2. Cf. A049281. - Peter Bala, Feb 21 2017
From Peter Bala, Feb 16 2022: (Start)
2*Sum_{k = 1..n} 1/(n+k) = 1 + 1/(1*2)*(n-1)/(n+1) - 1/(2*3)*(n-1)*(n-2)/((n+1)*(n+2)) + 1/(3*4)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) - 1/(4*5)*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) + - .... Cf. A101028.
2*Sum_{k = 1..n} 1/(n+k) = n - (1 + 1/2^2)*n*(n-1)/(n+1) + (1/2^2 + 1/3^2)*n*(n-1)*(n-2)/((n+1)*(n+2)) - (1/3^2 + 1/4^2)*n*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + (1/4^2 + 1/5^2)*n*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) - + .... Cf. A007406 and A120778.
These identities allow us to extend the definition of Sum_{k = 1..n} 1/(n+k) to non-integral values of n. (End)

Examples

			H'(2n) = H(2n) - H(n) = {1/2, 7/12, 37/60, 533/840, 1627/2520, 18107/27720, 237371/360360, 95549/144144, 1632341/2450448, 155685007/232792560, ...}, where H(n) = A001008/A002805.
n=2: HilbertMatrix(n,n)
   1  1/2
  1/2 1/3
so a(2) = Numerator(1 + 1/2 + 1/2 + 1/3) = Numerator(7/3) = 7.
The n X n Hilbert matrix begins:
   1   1/2  1/3  1/4  1/5  1/6  1/7  1/8  ...
  1/2  1/3  1/4  1/5  1/6  1/7  1/8  1/9  ...
  1/3  1/4  1/5  1/6  1/7  1/8  1/9  1/10 ...
  1/4  1/5  1/6  1/7  1/8  1/9  1/10 1/11 ...
  1/5  1/6  1/7  1/8  1/9  1/10 1/11 1/12 ...
  1/6  1/7  1/8  1/9  1/10 1/11 1/12 1/13 ...
		

Crossrefs

Bisection of A058313, A082688 (denominators).

Programs

  • Magma
    [Numerator((HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
    
  • Maple
    a := n -> numer(harmonic(2*n) - harmonic(n)):
    seq(a(n), n=1..20); # Peter Luschny, Nov 02 2017
  • Mathematica
    Numerator[Sum[1/k,{k,1,2*n}] - Sum[1/k,{k,1,n}]] (* Alexander Adamchuk, Apr 11 2006 *)
    Table[Numerator[Sum[1/(i + j - 1), {i, n}, {j, n}]], {n, 20}] (* Alexander Adamchuk, Apr 11 2006 *)
    Table[HarmonicNumber[2 n] - HarmonicNumber[n], {n, 20}] // Numerator (* Eric W. Weisstein, Dec 14 2017 *)
  • PARI
    a(n) = numerator(sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
    
  • SageMath
    [numerator(harmonic_number(2*n,1) - harmonic_number(n,1)) for n in range(1,41)] # G. C. Greubel, Jul 24 2023

Formula

Limit_{n -> oo} Sum_{k=1..n} 1/(n+k) = log(2).
Numerator of Psi(2*n+1) - Psi(n+1). - Vladeta Jovovic, Aug 24 2003
a(n) = numerator((Sum_{k=1..2*n} 1/k) - Sum_{k=1..n} 1/k). - Alexander Adamchuk, Apr 11 2006
a(n) = numerator(Sum_{j=1..n} (Sum_{i=1..n} 1/(i+j-1))). - Alexander Adamchuk, Apr 11 2006
The o.g.f for Sum_{k=1..n} 1/(n+k) is f(x) = (sqrt(x)*log((1+sqrt(x))/(1-sqrt(x))) + log(1-x))/(2*x*(1-x)).

A136675 Numerator of Sum_{k=1..n} (-1)^(k+1)/k^3.

Original entry on oeis.org

1, 7, 197, 1549, 195353, 194353, 66879079, 533875007, 14436577189, 14420574181, 19209787242911, 19197460851911, 42198121495296467, 6025866788581781, 6027847576222613, 48209723660000029, 236907853607882606477
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

a(n) is prime for n in A136683.
Lim_{n -> infinity} a(n)/A334582(n) = A197070. - Petros Hadjicostas, May 07 2020

Examples

			The first few fractions are 1, 7/8, 197/216, 1549/1728, 195353/216000, 194353/216000, 66879079/74088000, 533875007/592704000, ... = a(n)/A334582(n). - _Petros Hadjicostas_, May 06 2020
		

Crossrefs

Programs

  • Maple
    map(numer,ListTools:-PartialSums([seq((-1)^(k+1)/k^3, k=1..100)])); # Robert Israel, Nov 09 2023
  • Mathematica
    (* Program #1 *) Table[Numerator[Sum[(-1)^(k+1)/k^3, {k,1,n}]], {n,1,50}]
    (* Program #2 *) Numerator[Accumulate[Table[(-1)^(k+1) 1/k^3, {k,50}]]] (* Harvey P. Dale, Feb 12 2013 *)
  • PARI
    a(n) = numerator(sum(k=1, n, (-1)^(k+1)/k^3)); \\ Michel Marcus, May 07 2020

A136677 Numerator of Sum_{k=1..n} (-1)^(k+1)/k^6.

Original entry on oeis.org

1, 63, 45991, 2942695, 45982595359, 5109066151, 601081707598999, 38469080386820311, 252396118308232060471, 252395862211967012407, 447134922152359540530757327, 447134770212444455649757327, 2158234586764514215343657417779543, 308319185132349039219686748825649
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

p divides a(p-1) for prime p > 2. a(n) is prime for n = {19, 47, 164, ...} = A136686.
Lim_{n -> infinity} a(n)/A334605(n) = A275703 = (31/32)*A013664. - Petros Hadjicostas, May 07 2020

Examples

			The first few fractions are 1, 63/64, 45991/46656, 2942695/2985984, 45982595359/46656000000, 5109066151/5184000000, ... = a(n)/A334605(n). - _Petros Hadjicostas_, May 07 2020
		

Crossrefs

Programs

  • Mathematica
    Table[ Numerator[ Sum[ (-1)^(k+1)/k^6, {k,1,n} ] ], {n,1,30} ]
    Accumulate[Table[(-1)^(k+1)/k^6,{k,20}]]//Numerator (* Harvey P. Dale, Aug 21 2023 *)

A136676 Numerator of Sum_{k=1..n} (-1)^(k+1)/k^5.

Original entry on oeis.org

1, 31, 7565, 241837, 755989457, 755889457, 12705011703799, 406547611705943, 98792790681344149, 98791774426324117, 15910615688635928566967, 15910549913780913466967, 5907492176026179821253778331
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

a(n) is prime for n in A136685.
Lim_{n -> infinity} a(n)/A334604(n) = A267316 = (15/16)*A013663. - Petros Hadjicostas, May 07 2020

Examples

			The first few fractions are 1, 31/32, 7565/7776, 241837/248832, 755989457/777600000, 755889457/777600000, ... = a(n)/A334604(n). - _Petros Hadjicostas_, May 07 2020
		

Crossrefs

Programs

  • Mathematica
    Table[ Numerator[ Sum[ (-1)^(k+1)/k^5, {k,1,n} ] ], {n,1,30} ]
  • PARI
    a(n) = numerator(sum(k=1, n, (-1)^(k+1)/k^5)); \\ Michel Marcus, May 07 2020

A119722 Numerator of generalized harmonic number H(p-1,p)= Sum[ 1/k^p, {k,1,p-1}] divided by p^3 for prime p>3.

Original entry on oeis.org

2063, 2743174627, 19563315706517008974432827112201617, 2597378078067393746941400113704449589199274012223316613, 777478358612529699991463948563778410644748121498526065585976638854277886379480749840301120148933
Offset: 3

Views

Author

Alexander Adamchuk, Jun 13 2006

Keywords

Comments

Generalized harmonic number is H(n,m)= Sum[ 1/k^m, {k,1,n} ]. The numerator of generalized harmonic number H(p-1,p) is divisible by p^3 for prime p>3.

Examples

			Prime[3] = 5.
a(3) = numerator[ 1 + 1/2^5 + 1/3^5 + 1/4^5 ] / 5^3 = 257875/125 = 2063.
Prime[4] = 7
a(4) = numerator[ 1 + 1/2^7 + 1/3^7 + 1/4^7 + 1/5^7 + 1/6^7 ] / 7^3 = 2743174627.
		

Crossrefs

Programs

  • Mathematica
    Numerator[Table[Sum[1/k^Prime[n],{k,1,Prime[n]-1}],{n,3,9}]]/Table[Prime[n]^3,{n,3,9}]

Formula

a(n) = numerator[ Sum[ 1/k^Prime[n], {k,1,Prime[n]-1} ]] / Prime[n]^3 for n>2.

A136681 Numbers k such that A058313(k) is prime.

Original entry on oeis.org

3, 4, 5, 6, 9, 10, 13, 16, 17, 18, 37, 43, 58, 121, 124, 126, 137, 203, 247, 283, 285, 286, 289, 317, 424, 508, 751, 790, 937, 958, 1066, 1097, 1151, 1166, 1194, 1199, 1235, 1414, 1418, 1460, 1498, 1573, 2090, 2122, 2691, 2718, 3030, 3426, 3600, 3653, 3737
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

A058313(k) = Numerator of Sum_{j=1..k} (-1)^(j+1)/j.

Crossrefs

Programs

  • Mathematica
    Do[ f=Numerator[ Sum[ (-1)^(k+1)*1/k, {k,1,n} ] ]; If[ PrimeQ[f], Print[ {n,f} ] ], {n,1,317} ]
  • PARI
    isok(n) = isprime(numerator(sum(k=1, n, (-1)^(k+1)/k))); \\ Michel Marcus, Mar 14 2019

Extensions

a(25)-a(30) from James R. Buddenhagen, Sep 22 2015
a(31)-a(51) from Amiram Eldar, Mar 14 2019

A136682 Numbers k such that A119682(k) is prime.

Original entry on oeis.org

2, 3, 5, 8, 23, 41, 47, 48, 49, 95, 125, 203, 209, 284, 323, 395, 504, 553, 655, 781, 954, 1022, 1474, 1797, 1869, 1923, 1934, 1968, 2043, 2678, 3413, 3439, 4032, 4142, 4540, 4895, 5018, 5110, 5194, 5357, 6591, 11504, 11949, 14084, 20365
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

A119682(k) = Numerator of Sum_{j=1..k} (-1)^(j+1)/j^2.

Crossrefs

Programs

  • Mathematica
    Do[ f=Numerator[ Sum[ (-1)^(k+1)*1/k^2, {k,1,n} ] ]; If[ PrimeQ[f], Print[ {n,f} ] ], {n,1,125} ]

Extensions

a(12)-a(17) from Alexander Adamchuk, Apr 28 2008
a(18)-a(31) from Amiram Eldar, Mar 14 2019
a(32)-a(45) from Robert Price, Apr 14 2019
Previous Showing 21-30 of 80 results. Next