cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 52 results. Next

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A004770 Numbers of the form 8k+5; or, numbers whose binary expansion ends in 101.

Original entry on oeis.org

5, 13, 21, 29, 37, 45, 53, 61, 69, 77, 85, 93, 101, 109, 117, 125, 133, 141, 149, 157, 165, 173, 181, 189, 197, 205, 213, 221, 229, 237, 245, 253, 261, 269, 277, 285, 293, 301, 309, 317, 325, 333, 341, 349, 357, 365, 373, 381, 389, 397, 405, 413, 421, 429, 437, 445
Offset: 1

Views

Author

Keywords

Comments

Only numbers of the form 8k+5 may be written as a sum of 5 odd squares. Examples: 5 = 1+1+1+1+1, 13 = 9+1+1+1+1, 21 = 9+9+1+1+1, 29 = 25+1+1+1+1= 9+9+9+1+1, 37 = 9+9+9+9+1 = 25+9+1+1+1, 45 = 25+9+9+1+1=9+9+9+9+9, 53 = 49+1+1+1+1 = 25+25+1+1+1 = 25+9+9+9+1, ... - Philippe Deléham, Sep 03 2005
Positive solutions to the equation x == 5 (mod 8). - K.V.Iyer, Apr 27 2009

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 248.

Crossrefs

Cf. A004776 (complement), A007521 (primes).

Programs

Formula

From R. J. Mathar, Mar 14 2011: (Start)
a(n) = 8*n - 3.
G.f.: x*(5+3*x)/(x-1)^2. (End)
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, May 28 2011
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: exp(x)*(8*x - 3) + 3.
a(n) = A113770(n)/2 = A016813(2*n-1). (End)

A003629 Primes p == +- 3 (mod 8), or, primes p such that 2 is not a square mod p.

Original entry on oeis.org

3, 5, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67, 83, 101, 107, 109, 131, 139, 149, 157, 163, 173, 179, 181, 197, 211, 227, 229, 251, 269, 277, 283, 293, 307, 317, 331, 347, 349, 373, 379, 389, 397, 419, 421, 443, 461, 467, 491, 499, 509, 523, 541, 547, 557, 563
Offset: 1

Views

Author

Keywords

Comments

Complement of A038873 relative to A000040.
Also primes p such that p divides 2^((p-1)/2) + 1. - Cino Hilliard, Sep 04 2004
Primes p such that p^2 == 25 (mod 48), n > 1. - Gary Detlefs, Dec 29 2011
This sequence gives the primes p which satisfy C(p, x = 0) = -1, where C(p, x) is the minimal polynomial of 2*cos(Pi/p) (see A187360). For a proof see a comment on C(n, 0) in A230075. - Wolfdieter Lang, Oct 24 2013
Except for the initial 3, these are the primes p such that Fibonacci(p) mod 6 = 5. - Gary Detlefs, May 26 2014
Inert rational primes in the field Q(sqrt(2)). - N. J. A. Sloane, Dec 26 2017
If a prime p is congruent to 3 or 5 (mod 8) and r > 1, then 2^((p-1)*p^(r-1)/2) == -1 (mod p^r). - Marina Ibrishimova, Sep 29 2018
For the proofs or the comments by Cino Hilliard and Marina Ibrishimova, see link below. - Robert Israel, Apr 24 2019

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • Ronald S. Irving, Integers, Polynomials, and Rings. New York: Springer-Verlag (2004): 274.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001132 (complement from the odd primes), A007521 (subsequence), A038873, A226523.

Programs

  • Magma
    [3] cat [p: p in PrimesUpTo (600) | p^2 mod 48 eq 25]; // Vincenzo Librandi, May 23 2016
  • Maple
    for n from 2 to 563 do if(ithprime(n)^2 mod 48 = 25) then print(ithprime(n)) fi od. # Gary Detlefs, Dec 29 2011
  • Mathematica
    Select[Prime @ Range[2, 105], JacobiSymbol[2, # ] == -1 &] (* Robert G. Wilson v, Dec 15 2005 *)
    Select[Union[8Range[100] - 5, 8Range[100] - 3], PrimeQ[#] &] (* Alonso del Arte, May 22 2016 *)
    Select[Prime[Range[150]],MemberQ[{3,5},Mod[#,8]]&] (* Harvey P. Dale, Mar 02 2022 *)
  • PARI
    is(n)=isprime(n) && (n%8==3 || n%8==5) \\ Charles R Greathouse IV, Mar 21 2016
    

A057208 Primes of the form 8k+5 generated recursively: a(1)=5, a(n) = least prime p == 5 (mod 8) with p | 4+Q^2, where Q is the product of all previous terms in the sequence.

Original entry on oeis.org

5, 29, 1237, 32171803229, 829, 405565189, 14717, 39405395843265000967254638989319923697097319108505264560061, 282860648026692294583447078797184988636062145943222437, 53, 421, 13, 109, 4133, 6476791289161646286812333, 461, 34549, 453690033695798389561735541
Offset: 1

Views

Author

Labos Elemer, Oct 09 2000

Keywords

Examples

			a(3) = 1237 = 8*154 + 5 is the smallest suitable prime divisor of (5*29)*5*29 + 4 = 21029 = 17*1237. (Although 17 is the smallest prime divisor, 17 is not congruent to 5 modulo 8.)
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.

Crossrefs

Programs

  • Mathematica
    a={5}; q=1;
    For[n=2,n<=7,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[4+q^2][[All,1]],Mod[#,8]==5 &]]];
        ];
    a (* Robert Price, Jul 16 2015 *)
  • PARI
    lista(nn) = {v = vector(nn); v[1] = 5; print1(v[1], ", "); for (n=2, nn, f = factor(4 + prod(k=1, n-1, v[k])^2); for (k=1, #f~, if (f[k, 1] % 8 == 5, v[n] = f[k,1]; break);); print1(v[n], ", "););} \\ Michel Marcus, Oct 27 2014

Extensions

More terms from Sean A. Irvine, Oct 26 2014

A105126 Primes of the form 16n+9.

Original entry on oeis.org

41, 73, 89, 137, 233, 281, 313, 409, 457, 521, 569, 601, 617, 761, 809, 857, 937, 953, 1033, 1049, 1097, 1129, 1193, 1289, 1321, 1433, 1481, 1609, 1657, 1721, 1753, 1801, 1913, 1993, 2089, 2137, 2153, 2281, 2297, 2377, 2393, 2441, 2473, 2521, 2617, 2633, 2713
Offset: 1

Views

Author

N. J. A. Sloane, based on correspondence from Marco Matosic, Apr 11 2005

Keywords

Comments

A prime of the form 16n+9 is represented by exactly one of x^2 + 32y^2 and x^2 + 64y^2 (see Kaplanski link). - Michel Marcus, Dec 23 2012

Crossrefs

Programs

  • Maple
    M:=500; f:=proc(n) local t1,t2; t1:=[]; for k from 0 to M do t2:=2^n*k+2^(n-1)+1; if isprime(t2) then t1:=[op(t1),t2]; fi; od; t1; end; f(4);
  • Mathematica
    lst={};Do[p=16*n+9;If[PrimeQ[p],AppendTo[lst,p]],{n,0,3*5!,1}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 27 2009 *)
  • PARI
    select(n->n%16==9, primes(500)) \\ Charles R Greathouse IV, Apr 29 2015

A105133 Numbers n such that 8n + 5 is prime.

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 12, 13, 18, 19, 21, 22, 24, 28, 33, 34, 36, 39, 43, 46, 48, 49, 52, 57, 63, 67, 69, 76, 81, 82, 84, 87, 88, 91, 94, 96, 99, 102, 103, 106, 109, 117, 124, 126, 127, 132, 133, 136, 138, 139, 147, 151, 153, 154, 159, 162, 171, 172, 178, 181, 186, 193, 199, 201, 202
Offset: 1

Views

Author

N. J. A. Sloane, based on correspondence from Marco Matosic, Apr 11 2005

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..500] | IsPrime(8*n+5)];  // Vincenzo Librandi, Jan 07 2013
    
  • Maple
    M:=500; f:=proc(n) local t1,t2; t1:=[]; for k from 0 to M do t2:=2^n*k+2^(n-1)+1; if isprime(t2) then t1:=[op(t1),k]; fi; od; t1; end; f(3);
  • Mathematica
    Select[Range[0, 300], PrimeQ[8 # + 5]&] (* Vincenzo Librandi, Jan 07 2013 *)
  • PARI
    is(n)=isprime(8*n+5) \\ Charles R Greathouse IV, Feb 17 2017

Formula

a(n) = (A007521(n)-5)/8. - Zak Seidov, Sep 08 2015

A105132 Primes of the form 1024n + 513.

Original entry on oeis.org

7681, 10753, 11777, 17921, 23041, 26113, 32257, 36353, 45569, 51713, 67073, 76289, 81409, 84481, 87553, 96769, 102913, 112129, 113153, 115201, 118273, 119297, 125441, 133633, 143873, 153089, 155137, 158209, 159233, 161281, 168449, 170497, 176641
Offset: 1

Views

Author

N. J. A. Sloane, based on correspondence from Marco Matosic, Apr 11 2005

Keywords

Crossrefs

Programs

Formula

a(n) ~ 512n log n. - Charles R Greathouse IV, Nov 01 2022

A139487 Numbers k such that 8k + 7 is prime.

Original entry on oeis.org

0, 2, 3, 5, 8, 9, 12, 15, 18, 20, 23, 24, 27, 29, 32, 33, 38, 44, 45, 47, 53, 54, 57, 59, 60, 62, 74, 75, 78, 80, 89, 90, 92, 93, 102, 104, 107, 110, 113, 114, 120, 122, 123, 128, 129, 132, 135, 137, 143, 152, 153, 159, 162, 164, 165, 170, 174, 177, 179, 180, 183, 185
Offset: 1

Views

Author

Artur Jasinski, Apr 23 2008

Keywords

Comments

For numbers k such that:
8k+1 is prime see A005123, primes see A007519;
8k+3 is prime see A005124, primes see A007520;
8k+5 is prime see A105133, primes see A007521;
8k+7 is prime see A139487, primes see A007522.
8k + 7 divides A000225(4k+3). - Jinyuan Wang, Mar 08 2019

Crossrefs

Programs

  • Magma
    [n: n in [0..200] | IsPrime(8*n+7)]; // Vincenzo Librandi, Jun 25 2014
    
  • Mathematica
    a = {}; Do[If[PrimeQ[8 n + 7], AppendTo[a, n]], {n, 0, 300}]; a
    Select[Range[0,200],PrimeQ[8#+7]&] (* Harvey P. Dale, Oct 10 2012 *)
  • PARI
    is(n)=isprime(8*n+7) \\ Charles R Greathouse IV, Feb 17 2017

Formula

a(n) = (A007522(n) - 7)/8, n >= 1.

A141849 Primes congruent to 1 mod 11.

Original entry on oeis.org

23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Conjecture: Also primes p such that ((x+1)^11-1)/x has 10 distinct irreducible factors of degree 1 over GF(p). - Federico Provvedi, Apr 17 2018
Primes congruent to 1 mod 22. - Chai Wah Wu, Apr 28 2025

Crossrefs

Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016

A385224 Primes p such that multiplicative order of -4 modulo p is odd.

Original entry on oeis.org

5, 13, 29, 37, 41, 53, 61, 101, 109, 113, 137, 149, 157, 173, 181, 197, 229, 269, 277, 293, 313, 317, 349, 373, 389, 397, 409, 421, 457, 461, 509, 521, 541, 557, 569, 593, 613, 653, 661, 677, 701, 709, 733, 757, 761, 773, 797, 809, 821, 829, 853, 857, 877, 941, 953, 997
Offset: 1

Views

Author

Jianing Song, Jun 22 2025

Keywords

Comments

The multiplicative order of -4 modulo a(n) is A385230(n).
Different from A133204: 593 is here but not in A133204, and 1601 is in A133204 but not here.
The sequence contains no primes congruent to 3 modulo 4 and all primes congruent to 5 modulo 8:
- If p is a term of this sequence, then -4 is a quadratic residue modulo p, so p == 1 (mod 4);
- For p == 1 (mod 4), we have (-4)^((p-1)/4) == (+-1+-i)^(p-1) == 1 (mod p), where i is a solution to i^2 == -1 (mod p).
Conjecture: this sequence has density 1/3 among the primes.

Crossrefs

Subsequence of A002144 (primes congruent to 1 modulo 4).
Contains A007521 (primes congruent to 5 or modulo 8) as a proper subsequence.
Cf. A385230 (the actual multiplicative orders).
Cf. other bases: A014663 (base 2), A385220 (base 3), A385221 (base 4), A385192 (base 5), A163183 (base -2), A385223 (base -3), this sequence (base -4), A385225 (base -5).
Cf. A133204.

Programs

  • Mathematica
    Select[Prime[Range[200]], OddQ[MultiplicativeOrder[-4, #]] &] (* Paolo Xausa, Jun 28 2025 *)
  • PARI
    isA385224(p) = isprime(p) && (p!=2) && znorder(Mod(-4,p))%2
Previous Showing 11-20 of 52 results. Next