cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 128 results. Next

A045309 Primes congruent to {0, 2} mod 3.

Original entry on oeis.org

2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563
Offset: 1

Views

Author

Keywords

Comments

Also, primes p such that the equation x^3 == y (mod p) has a unique solution x for every choice of y. - Klaus Brockhaus, Mar 02 2001; Michel Drouzy (DrouzyM(AT)noos.fr), Oct 28 2001
2, 3 and primes congruent to 5 mod 6. - Chai Wah Wu, Apr 28 2025

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1000) | #[ x: x in ResidueClassRing(p) | x^3 eq 2 ] eq 1 ]; // Klaus Brockhaus, Apr 11 2009
    
  • Mathematica
    Select[Prime[Range[150]],MemberQ[{0,2},Mod[#,3]]&] (* Harvey P. Dale, Jun 14 2011 *)
  • PARI
    is(n)=isprime(n) && n%3!=1 \\ Charles R Greathouse IV, Apr 20 2015
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A045309_gen(): # generator of terms
        yield from (2,3)
        yield from filter(isprime, count(5,6))
    A045309_list = list(islice(A045309_gen(),48)) # Chai Wah Wu, Apr 28 2025

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Apr 20 2015

Extensions

Edited by N. J. A. Sloane, Apr 11 2009

A132231 Primes congruent to 7 (mod 30).

Original entry on oeis.org

7, 37, 67, 97, 127, 157, 277, 307, 337, 367, 397, 457, 487, 547, 577, 607, 727, 757, 787, 877, 907, 937, 967, 997, 1087, 1117, 1237, 1297, 1327, 1447, 1567, 1597, 1627, 1657, 1747, 1777, 1867, 1987, 2017, 2137, 2287, 2347, 2377, 2437, 2467, 2557, 2617, 2647
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

Primes ending in 7 with (SOD-1)/3 integer where SOD is sum of digits. - Ki Punches, Feb 07 2009
Intersection of A030432 and A002476. - Ray Chandler, Apr 07 2009
Only from 4927 on, there are more composite numbers than primes in {7+30k}, see A227869. - M. F. Hasler, Nov 02 2013
Terms are non-twin primes A007510, except for 7. - Jonathan Sondow, Oct 27 2017

Crossrefs

Programs

  • Haskell
    a132231 n = a132231_list !! (n-1)
    a132231_list = [x | k <- [0..], let x = 30 * k + 7, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Magma
    [p: p in PrimesUpTo(3000) | p mod 30 eq 7 ]; // Vincenzo Librandi, Aug 14 2012
    
  • Mathematica
    Select[30*Range[0,100]+7,PrimeQ] (* Harvey P. Dale, Feb 01 2012 *)
    Select[Prime[Range[1000]],MemberQ[{7},Mod[#,30]]&] (* Vincenzo Librandi, Aug 14 2012 *)
  • PARI
    forstep(p=7,1999,30,isprime(p)&&print1(p",")) \\ M. F. Hasler, Nov 02 2013

Formula

a(n) = A158573(n)*30 + 7. - Ray Chandler, Apr 07 2009
a(n) = A211890(4,n-1) for n <= 5. - Reinhard Zumkeller, Jul 13 2012

Extensions

Extended by Ray Chandler, Apr 07 2009

A132232 Primes congruent to 11 (mod 30).

Original entry on oeis.org

11, 41, 71, 101, 131, 191, 251, 281, 311, 401, 431, 461, 491, 521, 641, 701, 761, 821, 881, 911, 941, 971, 1031, 1061, 1091, 1151, 1181, 1301, 1361, 1451, 1481, 1511, 1571, 1601, 1721, 1811, 1871, 1901, 1931, 2081, 2111, 2141, 2351, 2381, 2411, 2441, 2531
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Crossrefs

Programs

Formula

From Ray Chandler, Apr 07 2009: (Start)
a(n) = A158614(n)*30 + 11.
Intersection of A030430 and A007528. (End)

Extensions

Extended by Ray Chandler, Apr 07 2009

A090686 Primes of the form 6n^2 - 1.

Original entry on oeis.org

5, 23, 53, 149, 293, 383, 599, 863, 1013, 1733, 2399, 2903, 4373, 4703, 5399, 6143, 7349, 8663, 11093, 12149, 16223, 18149, 20183, 21599, 23063, 23813, 25349, 27743, 29399, 31973, 33749, 35573, 40343, 41333, 45413, 51893, 56453, 59999, 62423
Offset: 1

Views

Author

Cino Hilliard, Dec 18 2003

Keywords

Comments

Subset of A007528. The values of n for which 6*n^2 - 1 is prime are 1, 2, 3, 5, 7, 8, 10, 12, 13, 17, 20, 22, 27, 28, 30, 32, 35, 38, 43, 45, 52, 55, 58, 60, 62, 63, 65, 68, 70, 73, 75, 77, 82, 83, 87, 93, 97, 100, ... - Jonathan Vos Post, Aug 27 2006

Crossrefs

Programs

  • Magma
    [a: n in [0..500] | IsPrime(a) where a is 6*n^2-1]; // Vincenzo Librandi, Dec 05 2011
  • Mathematica
    lst={};Do[p=6*n^2-1;If[PrimeQ[p],AppendTo[lst,p]],{n,0,3*5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 27 2009 *)
    Select[Table[6n^2-1,{n,0,700}],PrimeQ] (* Vincenzo Librandi, Dec 05 2011 *)
  • PARI
    mx2pmp(n) = { for(x=1,n, y = 6*x^2-1; if(isprime(y),print1(y",")) ) }
    

Extensions

Edited by N. J. A. Sloane at the suggestion of R. J. Mathar, Apr 14 2008

A132235 Primes congruent to 23 (mod 30).

Original entry on oeis.org

23, 53, 83, 113, 173, 233, 263, 293, 353, 383, 443, 503, 563, 593, 653, 683, 743, 773, 863, 953, 983, 1013, 1103, 1163, 1193, 1223, 1283, 1373, 1433, 1493, 1523, 1553, 1583, 1613, 1733, 1823, 1913, 1973, 2003, 2063, 2153, 2213, 2243, 2273, 2333, 2393
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

Primes (excluding 3) ending in 3 with (SOD-1)/3 non-integer where SOD is sum of digits. - Ki Punches
The sequence is infinite by Dirichlet's theorem. - Arkadiusz Wesolowski, Apr 02 2014
Terms are non-twin primes A007510. - Omar E. Pol, Jul 25 2019

Crossrefs

Programs

Formula

a(n) = A158791(n)*30 + 23. - Ray Chandler, Apr 07 2009
Intersection of A030431 and A007528. - Ray Chandler, Apr 07 2009

Extensions

Extended by Ray Chandler, Apr 07 2009

A154577 Primes of the form 2n^2+14n+5.

Original entry on oeis.org

5, 41, 293, 401, 461, 593, 821, 1181, 1493, 1721, 3593, 4493, 5081, 7793, 12941, 16001, 16361, 17093, 21821, 28541, 29021, 31481, 33521, 36161, 39461, 45281, 48341, 54101, 56093, 65141, 66593, 74093, 75641, 76421, 83621, 92861, 98993, 101681
Offset: 1

Views

Author

Vincenzo Librandi, Jan 12 2009

Keywords

Comments

Primes in A154576. [Omar E. Pol, Aug 05 2009]
Subsequence of A007528, A040117. [Bruno Berselli, Jun 18 2014]
2*a(n) + 39 is a square. - Vincenzo Librandi, Apr 10 2015

Crossrefs

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is 2*n^2+14*n+5]; // Vincenzo Librandi, Jul 23 2012
    
  • Mathematica
    Select[Table[2n^2+14n+5,{n,0,15001}],PrimeQ] (* Vincenzo Librandi, Jul 23 2012 *)
  • PARI
    for (n=0, 300, if (isprime (k=2*n^2+14*n+5), print1 (k, ",  "))); \\ Vincenzo Librandi, Jul 23 2012

Extensions

a(30)=66593 inserted, definition corrected and edited by Omar E. Pol, Aug 05 2009, Aug 06 2009
Added the first term 5 by Vincenzo Librandi, Jul 23 2012

A141849 Primes congruent to 1 mod 11.

Original entry on oeis.org

23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Conjecture: Also primes p such that ((x+1)^11-1)/x has 10 distinct irreducible factors of degree 1 over GF(p). - Federico Provvedi, Apr 17 2018
Primes congruent to 1 mod 22. - Chai Wah Wu, Apr 28 2025

Crossrefs

Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016

A334543 First occurrences of gaps between primes 6k - 1: gap sizes.

Original entry on oeis.org

6, 12, 18, 30, 24, 36, 42, 54, 48, 60, 84, 66, 78, 72, 126, 90, 102, 108, 114, 96, 120, 150, 138, 162, 132, 144, 168, 246, 156, 180, 186, 240, 204, 192, 216, 198, 210, 174, 258, 252, 222, 234, 228, 318, 282, 264, 276, 342, 306, 294, 312, 270, 354, 372
Offset: 1

Views

Author

Alexei Kourbatov, May 05 2020

Keywords

Comments

Contains A268928 as a subsequence. First differs from A268928 at a(5)=24.
Conjecture: the sequence is a permutation of all positive multiples of 6, i.e., all positive terms of A008588.
Conjecture: a(n) = O(n). See arXiv:2002.02115 (sect.7) for discussion.

Examples

			The first two primes of the form 6k-1 are 5 and 11, so a(1)=11-5=6. The next primes of this form are 17, 23, 29; the gaps 17-11 = 23-17 = 29-23 have size 6 which already occurred before; so nothing is added to the sequence. The next prime of this form is 41 and the gap 41-29=12 has not occurred before, so a(2)=12.
		

Crossrefs

Programs

  • PARI
    isFirstOcc=vector(9999,j,1); s=5; forprime(p=11,1e8,if(p%6!=5,next); g=p-s; if(isFirstOcc[g/6], print1(g", "); isFirstOcc[g/6]=0); s=p)

Formula

a(n) = A334545(n) - A334544(n).

A343430 Part of n composed of prime factors of the form 3k-1.

Original entry on oeis.org

1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 11, 4, 1, 2, 5, 16, 17, 2, 1, 20, 1, 22, 23, 8, 25, 2, 1, 4, 29, 10, 1, 32, 11, 34, 5, 4, 1, 2, 1, 40, 41, 2, 1, 44, 5, 46, 47, 16, 1, 50, 17, 4, 53, 2, 55, 8, 1, 58, 59, 20, 1, 2, 1, 64, 5, 22, 1, 68, 23, 10, 71, 8, 1, 2, 25, 4, 11, 2, 1, 80, 1, 82, 83, 4, 85
Offset: 1

Views

Author

Peter Munn, Jun 08 2021

Keywords

Comments

Largest term of A004612 that divides n.
Modulo 6, the prime numbers are partitioned into 4 nonempty sets: {2}, {3}, primes of the form 6k-1 (A007528) and primes of the form 6k+1 (A002476). The modulo 3 partition is nearly the same, but unites the only even prime, 2, with primes of the form 6k-1 in the set of primes we use here.
A positive integer m is a Loeschian number (a term of A003136) if and only if a(A007913(m)) = 1, that is the squarefree part of m has no prime factors of the form 3k-1.

Examples

			n = 60 has prime factorization 60 = 2 * 2 * 3 * 5. Factors 2 = 3*1 - 1 and 5 = 3*2 - 1 have form 3k-1, whereas 3 does not (having form 3k). Multiplying the factors of form 3k-1, we get 2 * 2 * 5 = 20. So a(60) = 20.
		

Crossrefs

Equivalent sequences for prime factors of other forms: A006519 (2 only), A000265 (2k+1), A038500 (3 only), A038502 (3k+/-1), A170818 (4k+1), A097706 (4k-1), A248909 (6k+1), A343431 (6k-1).
Range of terms: A004612 (closure under multiplication of A003627).
Cf. A002476, A007528, squarefree part (A007913) of terms of A003136.
First 28 terms are the same as A247503.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 3] == 2, p^e, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 11 2021 *)
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if ((f[i, 1] + 1) % 3, f[i, 1] = 1); ); factorback(f); } \\ after Michel Marcus at A248909
    
  • Python
    from math import prod
    from sympy import factorint
    def A343430(n): return prod(p**e for p, e in factorint(n).items() if p%3==2) # Chai Wah Wu, Dec 23 2022

Formula

Completely multiplicative with a(p) = p if p is of the form 3k-1, otherwise a(p) = 1.
For k >= 1, a(n) = a(k*n) / gcd(k, a(k*n)).
a(n) = A006519(n) * A343431(n).
a(n) = (n / A038500(n)) / A248909(n) = A038502(n) / A248909(n).
A006519(a(n)) = a(A006519(n)) = A006519(n).
A343431(a(n)) = a(A343431(n)) = A343431(n).
A038500(a(n)) = a(A038500(n)) = 1.
A248909(a(n)) = a(A248909(n)) = 1.

A045410 Primes congruent to {3, 5} mod 6.

Original entry on oeis.org

3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569
Offset: 1

Views

Author

Keywords

Crossrefs

Essentially the same as A007528.
Cf. A000040.

Programs

Extensions

Extended by Charles R Greathouse IV, Mar 19 2010
Previous Showing 21-30 of 128 results. Next