cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A045754 7-fold factorials: a(n) = Product_{k=0..n-1} (7*k+1).

Original entry on oeis.org

1, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 337767408000, 21617114112000, 1534815101952000, 119715577952256000, 10175824125941760000, 936175819586641920000, 92681406139077550080000, 9824229050742220308480000, 1110137882733870894858240000
Offset: 0

Views

Author

Keywords

Crossrefs

See also A113134.
Unsigned row sums of triangle A051186 (scaled Stirling1).
First column of triangle A132056 (S2(8)).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+1) ); # G. C. Greubel, Aug 21 2019
  • Magma
    [1] cat [&*[7*j+1: j in [0..n-1]]: n in [1..20]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    f := n->product( (7*k+1), k=0..(n-1));
    G(x):=(1-7*x)^(-1/7): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    FoldList[Times, 1, 7Range[0, 20] + 1] (* Harvey P. Dale, Jan 21 2013 *)
  • PARI
    a(n)=prod(k=0,n-1,7*k+1)
    
  • Sage
    [7^n*rising_factorial(1/7, n) for n in (0..20)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n) = Sum_{k=0..n} (-7)^(n-k)*A048994(n, k), where A048994 = Stirling-1 numbers.
E.g.f.: (1-7*x)^(-1/7).
G.f.: 1/(1-x/(1-7*x/(1-8*x/(1-14*x/(1-15*x/(1-21*x/(1-22*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-6)^n*Sum_{k=0..n} (7/6)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/G(0), where G(k)= 1 - x*(7*k+1)/(1 - x*(7*k+7)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(7*k+1)/(x*(7*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
a(n) = 7^n * Gamma(n + 1/7) / Gamma(1/7). - Artur Jasinski, Aug 23 2016
a(n) = A114799(7n-6). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-7*n+6)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/7^6)^(1/7)*(Gamma(1/7) - Gamma(1/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

Additional comments from Philippe Deléham and Paul D. Hanna, Oct 29 2005
Edited by N. J. A. Sloane, Oct 16 2008 at the suggestion of M. F. Hasler, Oct 14 2008
Corrected by Zerinvary Lajos, Apr 03 2009

A049209 a(n) = -Product_{k=0..n} (7*k-1); sept-factorial numbers.

Original entry on oeis.org

1, 6, 78, 1560, 42120, 1432080, 58715280, 2818333440, 155008339200, 9610517030400, 663125675097600, 50397551307417600, 4182996758515660800, 376469708266409472000, 36517561701841718784000, 3797826416991538753536000, 421558732286060801642496000
Offset: 0

Views

Author

Keywords

Crossrefs

Row sums of triangle A051186 (scaled Stirling1 triangle).
Sequences of the form m^n*Pochhammer((m-1)/m, n): A000007 (m=1), A001147 (m=2), A008544 (m=3), A008545 (m=4), A008546 (m=5), A008543 (m=6), this sequence (m=7), A049210 (m=8), A049211 (m=9), A049212 (m=10), A254322 (m=11), A346896 (m=12).

Programs

  • Magma
    [ -&*[ (7*k-1): k in [0..n-1] ]: n in [1..15] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Mathematica
    CoefficientList[Series[(1-7*x)^(-6/7),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
    With[{m=7}, Table[m^n*Pochhammer[(m-1)/m, n], {n, 0, 30}]] (* G. C. Greubel, Feb 16 2022 *)
  • Sage
    m=7; [m^n*rising_factorial((m-1)/m, n) for n in (0..30)] # G. C. Greubel, Feb 16 2022

Formula

a(n) = 6*A034833(n) = (7*n-1)*(!^7), n >= 1, a(0) := 1.
a(n) = Product_{k=1..n} (7*k - 1). a(0) = 1; a(n) = (7*n - 1)*a(n-1) for n > 0. - Klaus Brockhaus, Nov 10 2008
G.f.: 1/(1-6*x/(1-7*x/(1-13*x/(1-14*x/(1-20*x/(1-21*x/(1-27*x/(1-28*x/(1-...(continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-1)^n*Sum_{k=0..n} 7^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
a(n) = 7^n * Gamma(n+6/7) / Gamma(6/7). - Vaclav Kotesovec, Jan 28 2015
E.g.f.: (1-7*x)^(-6/7). - Vaclav Kotesovec, Jan 28 2015
From Nikolaos Pantelidis, Dec 19 2020: (Start)
G.f.: 1/G(0) where G(k) = 1 - (14*k+6)*x - 7*(k+1)*(7*k+6)*x^2/G(k+1); (continued fraction).
which starts as 1/(1-6*x-42*x^2/(1-20*x-182*x^2/(1-34*x-420*x^2/(1-48*x-756*x^2/(1-62*x-1190*x^2/(1-... )))))) (Jacobi continued fraction).
G.f.: 1/Q(0) where Q(k) = 1 - (7*k+6)*x/(1 - (7*k+7)*x/Q(k+1) ); (continued fraction). (End)
Sum_{n>=0} 1/a(n) = 1 + (e/7)^(1/7)*(Gamma(6/7) - Gamma(6/7, 1/7)). - Amiram Eldar, Dec 19 2022

A000369 Triangle of numbers related to triangle A049213; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.

Original entry on oeis.org

1, 3, 1, 21, 9, 1, 231, 111, 18, 1, 3465, 1785, 345, 30, 1, 65835, 35595, 7650, 825, 45, 1, 1514205, 848925, 196245, 24150, 1680, 63, 1, 40883535, 23586255, 5755050, 775845, 62790, 3066, 84, 1, 1267389585, 748471185, 190482705, 27478710
Offset: 1

Views

Author

Keywords

Comments

a(n,m) := S2p(-3; n,m), a member of a sequence of triangles including S2p(-1; n,m) := A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) := A008277(n,m) (Stirling 2nd kind). a(n,1)= A008545(n-1).
a(n,m), n>=m>=1, enumerates unordered n-vertex m-forests composed of m increasing plane (aka ordered) trees, with one vertex of out-degree r=0 (leafs or a root) and each vertex with out-degree r>=1 comes in r+2 types (like for an (r+2)-ary vertex). Proof from the e.g.f. of the first column Y(z):=1-(1-4*x)^(1/4) and the F. Bergeron et al. reference given in A001498, eq. (8), Y'(z)= phi(Y(z)), Y(0)=0, with out-degree o.g.f. phi(w)=1/(1-w)^3. - Wolfdieter Lang, Oct 12 2007
Also the Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+3) (A008545) adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265606. - Peter Luschny, Dec 31 2015

Examples

			Triangle begins:
  1;
  3, 1;
  21, 9, 1;
  231, 111, 18, 1;
  3465, 1785, 345, 30, 1; ...
Tree combinatorics for a(3,2)=9: there are three m=2 forests each with one tree a root (with out-degree r=0) and the other tree a root and a leaf coming in three versions (like for a 3-ary vertex). Each such forest can be labeled increasingly in three ways (like (1,(23)), (2,(13)) and (3,(12))) yielding 9 such forests. - _Wolfdieter Lang_, Oct 12 2007
		

Crossrefs

Row sums give A016036. Cf. A004747.
Columns include A008545.
Alternating row sums A132163.

Programs

Formula

a(n, m) = n!*A049213(n, m)/(m!*4^(n-m)); a(n+1, m) = (4*n-m)*a(n, m) + a(n, m-1), n >= m >= 1; a(n, m) := 0, n
E.g.f. of m-th column: ((1-(1-4*x)^(1/4))^m)/m!.
From Peter Bala, Jun 08 2016: (Start)
With offset 0, the e.g.f. is 1/(1 - 4*x)^(3/4)*exp(t*(1 - (1 - 4*x)^(1/4))) = 1 + (3 + t)*x + (21 + 9*t + t^2)*x^2/2! + ....
Thus with row and column numbering starting at 0, this triangle is the exponential Riordan array [d/dx(F(x)), F(x)], belonging to the Derivative subgroup of the exponential Riordan group, where F(x) = 1 - (1 - 4*x)^(1/4).
Row polynomial recurrence: R(n+1,t) = t*Sum_{k = 0..n} binomial(n,k)*A008545(k)*R(n-k,t) with R(0,t) = 1. (End)

A049211 a(n) = Product_{k=1..n} (9*k - 1); 9-factorial numbers.

Original entry on oeis.org

1, 8, 136, 3536, 123760, 5445440, 288608320, 17893715840, 1270453824640, 101636305971200, 9045631231436800, 886471860680806400, 94852489092846284800, 11002888734770169036800, 1375361091846271129600000, 184298386307400331366400000, 26354669241958247385395200000
Offset: 0

Keywords

Crossrefs

Sequences of the form m^n*Pochhammer((m-1)/m, n): A000007 (m=1), A001147 (m=2), A008544 (m=3), A008545 (m=4), A008546 (m=5), A008543 (m=6), A049209 (m=7), A049210 (m=8), this sequence (m=9), A049212 (m=10), A254322 (m=11), A346896 (m=12).

Programs

  • Magma
    m:=9; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..20]]; // G. C. Greubel, Feb 08 2022
    
  • Mathematica
    CoefficientList[Series[(1-9*x)^(-8/9),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
  • PARI
    a(n) = prod(k=1, n, 9*k-1); \\ Michel Marcus, Jan 08 2015
    
  • Sage
    m=9; [m^n*rising_factorial((m-1)/m, n) for n in (0..20)] # G. C. Greubel, Feb 08 2022

Formula

a(n) = 8*A035022(n) = (9*n-1)(!^9), n >= 1, a(0) = 1.
a(n) = (-1)^n*Sum_{k=0..n} 9^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
a(n) = 9^n * Gamma(n+8/9) / Gamma(8/9). - Vaclav Kotesovec, Jan 28 2015
E.g.f: (1-9*x)^(-8/9). - Vaclav Kotesovec, Jan 28 2015
From Nikolaos Pantelidis, Dec 09 2020: (Start)
G.f.: 1/(1-8*x-72*x^2/(1-26*x-306*x^2/(1-44*x-702*x^2/(1-62*x-1260*x^2/(1-80*x-1980*x^2/(1-...)))))) (Jacobi continued fraction).
G.f.: 1/(1-8*x/(1-9*x/(1-17*x/(1-18*x/(1-26*x/(1-27*x/(1-35*x/(1-36*x/(1-44*x/(1-45*x/(1-...))))))))))) (Stieltjes continued fraction). (End)
From Nikolaos Pantelidis, Dec 19 2020: (Start)
G.f.: 1/G(0) where G(k) = 1 - (18*k+8)*x - 9*(k+1)*(9*k+8)*x^2/G(k+1) (continued fraction).
G.f.: 1/Q(0) where Q(k) = 1 - x*(9*k+8)/(1 - x*(9*k+9)/Q(k+1) ) (continued fraction). (End)
G.f.: hypergeometric2F0([1, 8/9], [--], 9*x). - G. C. Greubel, Feb 08 2022
Sum_{n>=0} 1/a(n) = 1 + (e/9)^(1/9)*(Gamma(8/9) - Gamma(8/9, 1/9)). - Amiram Eldar, Dec 21 2022

Extensions

a(9) (originally given incorrectly as 1011636305971200) corrected by Peter Bala, Feb 20 2015
a(15)-a(16) from Vincenzo Librandi, Feb 20 2015
a(16) corrected and incorrect MAGMA program removed by Georg Fischer, May 10 2021

A114799 Septuple factorial, 7-factorial, n!7, n!!!!!!!, a(n) = n*a(n-7) if n > 1, else 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 18, 30, 44, 60, 78, 98, 120, 288, 510, 792, 1140, 1560, 2058, 2640, 6624, 12240, 19800, 29640, 42120, 57624, 76560, 198720, 379440, 633600, 978120, 1432080, 2016840, 2756160, 7352640, 14418720, 24710400, 39124800
Offset: 0

Author

Jonathan Vos Post, Feb 18 2006

Keywords

Comments

Many of the terms yield multifactorial primes a(n) + 1, e.g.: a(2) + 1 = 3, a(4) + 1 = 5, a(6) + 1 = 7, a(9) + 1 = 19, a(10) + 1 = 31, a(12) + 1 = 61, a(13) + 1 = 79, a(24) + 1 = 12241, a(25) + 1 = 19801, a(26) + 1 = 29641, a(29) + 1 = 76561, a(31) + 1 = 379441, a(35) + 1 = 2016841, a(36) + 1 = 2756161, ...
Equivalently, product of all positive integers <= n congruent to n (mod 7). - M. F. Hasler, Feb 23 2018

Examples

			a(40) = 40 * a(40-7) = 40 * a(33) = 40 * (33*a(26)) = 40 * 33 * (26*a(19)) = 40 * 33 * 26 * (19*a(12)) = 40 * 33 * 26 * 19 * (12*a(5)) = 40 * 33 * 26 * 19 * 12 5 = 39124800.
		

Programs

  • GAP
    a:= function(n)
        if n<1 then return 1;
        else return n*a(n-7);
        fi;
      end;
    List([0..40], n-> a(n) ); # G. C. Greubel, Aug 20 2019
  • Magma
    b:= func< n | (n lt 8) select n else n*Self(n-7) >;
    [1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 20 2019
    
  • Maple
    A114799 := proc(n)
        option remember;
        if n < 1 then
            1;
        else
            n*procname(n-7) ;
        end if;
    end proc:
    seq(A114799(n),n=0..40) ; # R. J. Mathar, Jun 23 2014
    A114799 := n -> product(n-7*k,k=0..(n-1)/7); # M. F. Hasler, Feb 23 2018
  • Mathematica
    a[n_]:= If[n<1, 1, n*a[n-7]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Aug 20 2019 *)
  • PARI
    A114799(n,k=7)=prod(j=0,(n-1)\k,n-j*k) \\ M. F. Hasler, Feb 23 2018
    
  • Sage
    def a(n):
        if (n<1): return 1
        else: return n*a(n-7)
    [a(n) for n in (0..40)] # G. C. Greubel, Aug 20 2019
    

Formula

a(n) = 1 for n <= 1, else a(n) = n*a(n-7).
Sum_{n>=0} 1/a(n) = A288094. - Amiram Eldar, Nov 10 2020

Extensions

Edited by M. F. Hasler, Feb 23 2018

A144739 7-factorial numbers A114799(7*n+3): Partial products of A017017(k) = 7*k+3, a(0) = 1.

Original entry on oeis.org

1, 3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800, 1990648483200, 131382799891200, 9590944392057600, 767275551364608000, 66752972968720896000, 6274779459059764224000, 633752725365036186624000, 68445294339423908155392000, 7871208849033749437870080000
Offset: 0

Author

Philippe Deléham, Sep 20 2008

Keywords

Examples

			a(0)=1, a(1)=3, a(2)=3*10=30, a(3)=3*10*17=510, a(4)=3*10*17*24=12240, ...
		

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+3) ); # G. C. Greubel, Aug 19 2019
  • Magma
    [ 1 ] cat [ &*[ (7*k+3): k in [0..n] ]: n in [0..20] ]; // Klaus Brockhaus, Nov 10 2008
    
  • Maple
    a:= n-> product(7*j+3, j=0..n-1); seq(a(n), n=0..20); # G. C. Greubel, Aug 19 2019
  • Mathematica
    Table[7^n*Pochhammer[3/7, n], {n,0,20}] (* G. C. Greubel, Aug 19 2019 *)
  • PARI
    a(n)=prod(i=1,n,7*i-4) \\ Charles R Greathouse IV, Jul 02 2013
    
  • Sage
    [product(7*k+3 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 19 2019
    

Formula

a(n) = Sum_{k=0..n} A132393(n,k)*3^k*7^(n-k).
G.f.: 1/(1-3*x/(1-7*x/(1-10*x/(1-14*x/(1-17*x/(1-21*x/(1-24*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-4)^n*Sum_{k=0..n} (7/4)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
From Ilya Gutkovskiy, Mar 23 2017: (Start)
E.g.f.: 1/(1 - 7*x)^(3/7).
a(n) ~ sqrt(2*Pi)*7^n*n^n/(exp(n)*n^(1/14)*Gamma(3/7)). (End)
a(n) = A114799(7*n-4). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-7*n+4)*a(n-1)=0. - R. J. Mathar, Feb 21 2020
Sum_{n>=0} 1/a(n) = 1 + (e/7^4)^(1/7)*(Gamma(3/7) - Gamma(3/7, 1/7)). - Amiram Eldar, Dec 19 2022

A049210 a(n) = -Product_{k=0..n} (8*k-1); octo-factorial numbers.

Original entry on oeis.org

1, 7, 105, 2415, 74865, 2919735, 137227545, 7547514975, 475493443425, 33760034483175, 2667042724170825, 232032717002861775, 22043108115271868625, 2270440135873002468375, 252018855081903273989625, 29990243754746489604765375, 3808760956852804179805202625
Offset: 0

Keywords

Crossrefs

Sequences of the form m^n*Pochhammer((m-1)/m, n): A000007 (m=1), A001147 (m=2), A008544 (m=3), A008545 (m=4), A008546 (m=5), A008543 (m=6), A049209 (m=7), this sequence (m=8), A049211 (m=9), A049212 (m=10), A254322 (m=11), A346896 (m=12).

Programs

  • Magma
    m:=8; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..30]]; // G. C. Greubel, Feb 16 2022
  • Mathematica
    FoldList[Times,1,8*Range[20]-1] (* Harvey P. Dale, Aug 03 2014 *)
    CoefficientList[Series[(1-8*x)^(-7/8),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
  • PARI
    a(n) = -prod(k=0, n, 8*k-1); \\ Michel Marcus, Jan 08 2015
    
  • Sage
    m=8; [m^n*rising_factorial((m-1)/m, n) for n in (0..30)] # G. C. Greubel, Feb 16 2022
    

Formula

a(n) = 7*A034975(n) = (8*n-1)(!^8), n >= 1, a(0) = 1.
G.f.: 1/(1-7*x/(1-8*x/(1-15*x/(1-16*x/(1-23*x/(1-24*x/(1-31*x/(1-32*x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
a(n) = (-1)^n*Sum_{k=0..n} 8^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: ( 1 - 1/Q(0) )/x where Q(k) = 1 - x*(8*k-1)/(1 - x*(8*k+8)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
a(n) = 8^n*Gamma(n+7/8)/Gamma(7/8). - R. J. Mathar, Mar 20 2013
E.g.f: (1-8*x)^(-7/8). - Vaclav Kotesovec, Jan 28 2015
G.f.: 1/(1-7*x-56*x^2/(1-23*x-240*x^2/(1-39*x-552*x^2/(1-55*x-992*x^2/(1-71*x-1560*x^2/(1-... )))))) (Jacobi continued fraction). - Nikolaos Pantelidis, Dec 09 2020
G.f.: 1/G(0) where G(k) = 1 - (16*k+7)*x - 8*(k+1)*(8*k+7)*x^2/G(k+1); (continued fraction). - Nikolaos Pantelidis, Dec 19 2020
Sum_{n>=0} 1/a(n) = 1 + (e/8)^(1/8)*(Gamma(7/8) - Gamma(7/8, 1/8)). - Amiram Eldar, Dec 20 2022

A051142 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -4, 1, 32, -12, 1, -384, 176, -24, 1, 6144, -3200, 560, -40, 1, -122880, 70144, -14400, 1360, -60, 1, 2949120, -1806336, 415744, -47040, 2800, -84, 1, -82575360, 53526528, -13447168, 1732864, -125440, 5152, -112, 1, 2642411520, -1795424256, 483835904
Offset: 1

Keywords

Comments

a(n,m) = R_n^m(a=0, b=4) in the notation of the given 1961 and 1962 references.
a(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := Sum_{m=1..n} a(n,m)*x^m = Product_{j=0..n-1} (x - 4*j), n >= 1, and E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
This is the signed Stirling1 triangle with diagonal d >= 0 (main diagonal d = 0) scaled with 4^d.
Also the Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+4) (A047053) giving unsigned values and adding 1, 0, 0, 0, ... as column 0. For the definition of the Bell transform, see A264428 and for cross-references A265606. - Peter Luschny, Dec 31 2015

Examples

			Triangle a(n,m) (with rows n >= 1 and columns m = 1..n) begins:
        1;
       -4,     1;
       32,   -12,      1;
     -384,   176,    -24,    1;
     6144, -3200,    560,  -40,   1,
  -122880, 70144, -14400, 1360, -60, 1;
  ...
3rd row o.g.f.: E(3,x) = 32*x - 12*x^2 + x^3.
		

Crossrefs

First (m=1) column sequence is: A047053(n-1).
Row sums (signed triangle): A008545(n-1)*(-1)^(n-1).
Row sums (unsigned triangle): A007696(n).
Cf. A008275 (Stirling1 triangle, b=1), A039683 (b=2), A051141 (b=3).

Programs

  • Mathematica
    Table[StirlingS1[n, m] 4^(n - m), {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
  • Sage
    # uses[bell_transform from A264428]
    # Unsigned values and an additional first column (1,0,0,0, ...).
    def A051142_row(n):
        multifact_4_4 = lambda n: prod(4*k + 4 for k in (0..n-1))
        mfact = [multifact_4_4(k) for k in (0..n)]
        return bell_transform(n, mfact)
    [A051142_row(n) for n in (0..9)] # Peter Luschny, Dec 31 2015

Formula

a(n, m) = a(n-1, m-1) - 4*(n-1)*a(n-1, m) for n >= m >= 1; a(n, m) := 0 for n < m; a(n, 0) := 0 for n >= 1; a(0, 0) = 1.
E.g.f. for the m-th column of the signed triangle: (log(1 + 4*x)/4)^m/m!.
a(n, m) = S1(n, m)*4^(n-m), with S1(n, m) := A008275(n, m) (signed Stirling1 triangle).

A157403 A partition product of Stirling_2 type [parameter k = 3] with biggest-part statistic (triangle read by rows).

Original entry on oeis.org

1, 1, 3, 1, 9, 21, 1, 45, 84, 231, 1, 165, 840, 1155, 3465, 1, 855, 8610, 13860, 20790, 65835, 1, 3843, 64680, 250635, 291060, 460845, 1514205, 1, 21819, 689136, 3969735, 6015240, 7373520, 12113640, 40883535, 1, 114075
Offset: 1

Author

Peter Luschny, Mar 09 2009

Keywords

Comments

Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = 3,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A143173.
Same partition product with length statistic is A000369.
Diagonal a(A000217) = A008545
Row sum is A016036.

Formula

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(4*j - 1).

A181049 Decimal expansion of (Pi/2 - log(1+sqrt(2)))/(2*sqrt(2)) = Sum_{k>=0} (-1)^k/(4k+3).

Original entry on oeis.org

2, 4, 3, 7, 4, 7, 7, 4, 7, 1, 9, 9, 6, 8, 0, 5, 2, 4, 1, 7, 9, 9, 7, 5, 0, 8, 3, 6, 3, 2, 3, 0, 2, 7, 1, 1, 0, 0, 1, 4, 8, 0, 0, 5, 4, 9, 9, 8, 6, 7, 7, 6, 5, 1, 4, 3, 6, 3, 1, 7, 0, 6, 2, 8, 2, 1, 4, 6, 9, 3, 4, 6, 8, 6, 3, 9, 2, 7, 1, 4, 8, 5, 8, 8, 0, 8, 1, 3, 3, 0, 2, 2, 7, 7, 8, 2, 3, 4, 0, 6, 3, 5, 6, 3, 4
Offset: 0

Author

Jonathan D. B. Hodgson, Oct 01 2010, Oct 05 2010

Keywords

Comments

Let N be a positive integer divisible by 4. We have the asymptotic expansion 2*((Pi/2 - log(1 + sqrt(2)))/(2*sqrt(2)) - Sum_{k = 0..N/4 - 1} (-1)^k/(4*k + 3)) ~ 1/N - 1/N^2 - 3/N^3 + 11/N^4 + 57/N^5 - ..., where the sequence of coefficients [1, -1, -3, 11, 57, ...] is A212435. This follows from Borwein et al., Lemma 2 with f(x) = 1/x and then set x = N/4 and h = 3/4. An example is given below. Cf. A181048. - Peter Bala, Sep 23 2016

Examples

			0.2437477471996805241799750836323027110...
From _Peter Bala_, Sep 23 2016: (Start)
At N = 100000 the truncated series 2*Sum_{k = 0..N/4 - 1} (-1)^k/(4*k + 3) = 0.4874(8)5494(4)9936(4)048(24)99(444)67(625)6... to 32 digits. The bracketed numbers show where this decimal expansion differs from that of 2*A181049. The numbers 1, -1, -3, 11, 57, -361 must be added to the bracketed numbers to give the correct decimal expansion to 32 digits: 2*( Pi/2 - log(1+sqrt(2)))/(2*sqrt(2) ) = 0.4874(9)5494(3)9936(1)048(35)99(501)67(264)6.... (End)
		

Programs

  • Magma
    C := ComplexField(); [(Pi(C)/2 - Log(1+Sqrt(2)))/(2*Sqrt(2))]; // G. C. Greubel, Nov 28 2017
  • Mathematica
    First@ RealDigits[N[(Pi/2 - Log[1 + Sqrt@ 2])/(2 Sqrt@ 2), 105]] (* Michael De Vlieger, Oct 07 2015 *)
  • PARI
    default(realprecision, 106);
    eval(vecextract(Vec(Str(sumalt(n=0, (-1)^(n)/(4*n+3)))), "3..-2")) \\ Gheorghe Coserea, Oct 06 2015
    
  • PARI
    (Pi/2 - log(1+sqrt(2)))/(2*sqrt(2)) \\ G. C. Greubel, Nov 28 2017
    

Formula

Equals Integral_{x=0..1} (x^2 dx)/(1+x^4).
Equals (1/2) * Integral_{x = 0..Pi/4} sqrt(tan(x)) dx. Cf. A247719. - Peter Bala, Sep 23 2016
Equals Sum_{n >= 0} 2^(n-1)*n!/(Product_{k = 0..n} 4*k + 3) = Sum_{n >= 0} 2^(n-1)*n!/A008545(n+1) (apply Euler's series transformation to Sum_{k >= 0} (-1)^k/(4*k+3)). - Peter Bala, Dec 01 2021
From Peter Bala, Mar 03 2024: (Start)
Continued fraction: 1/(3 + 3^2/(4 + 7^2/(4 + 11^2/(4 + 15^2/(4 + ... ))))) due to Euler.
Equals (1/3)*hypergeom([3/4, 1], [7/4], -1).
Gauss's continued fraction: 1/(3 + 3^2/(7 + 4^2/(11 + 7^2/(15 + 8^2/(19 + 11^2/(23 + 12^2/(27 + 15^2/(31 + 16^2/(35 + 19^2/(39 + ... )))))))))). (End)
Equals Integral_{x=1..oo, y=1..oo} 1/(x^4 + y^4) dx. - Vaclav Kotesovec, Jun 13 2024
Previous Showing 11-20 of 46 results. Next