cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 107 results. Next

A139273 a(n) = n*(8*n - 3).

Original entry on oeis.org

0, 5, 26, 63, 116, 185, 270, 371, 488, 621, 770, 935, 1116, 1313, 1526, 1755, 2000, 2261, 2538, 2831, 3140, 3465, 3806, 4163, 4536, 4925, 5330, 5751, 6188, 6641, 7110, 7595, 8096, 8613, 9146, 9695, 10260, 10841, 11438, 12051, 12680
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139277 in the same spiral.
Also, sequence of numbers of the form d*A000217(n-1) + 5*n with generating functions x*(5+(d-5)*x)/(1-x)^3; the inverse binomial transform is 0,5,d,0,0,.. (0 continued). See Crossrefs. - Bruno Berselli, Feb 11 2011
Even decagonal numbers divided by 2. - Omar E. Pol, Aug 19 2011

Crossrefs

Programs

  • Magma
    [ n*(8*n-3) : n in [0..40] ];  // Bruno Berselli, Feb 11 2011
    
  • Mathematica
    Table[n (8 n - 3), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 26}, 40] (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    a(n)=n*(8*n-3) \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = 8*n^2 - 3*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 11 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: x*(5 + 11*x)/(1 - x)^3.
a(n) = 4*A000217(n) + A051866(n). (End)
a(n) = A028994(n)/2. - Omar E. Pol, Aug 19 2011
a(0)=0, a(1)=5, a(2)=26; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 02 2012
E.g.f.: (8*x^2 + 5*x)*exp(x). - G. C. Greubel, Jul 18 2017
Sum_{n>=1} 1/a(n) = 4*log(2)/3 - (sqrt(2)-1)*Pi/6 - sqrt(2)*arccoth(sqrt(2))/3. - Amiram Eldar, Jul 03 2020

A141419 Triangle read by rows: T(n, k) = A000217(n) - A000217(n - k) with 1 <= k <= n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 4, 7, 9, 10, 5, 9, 12, 14, 15, 6, 11, 15, 18, 20, 21, 7, 13, 18, 22, 25, 27, 28, 8, 15, 21, 26, 30, 33, 35, 36, 9, 17, 24, 30, 35, 39, 42, 44, 45, 10, 19, 27, 34, 40, 45, 49, 52, 54, 55
Offset: 1

Views

Author

Roger L. Bagula, Aug 05 2008

Keywords

Comments

As a rectangle, the accumulation array of A051340.
From Clark Kimberling, Feb 05 2011: (Start)
Here all the weights are divided by two where they aren't in Cahn.
As a rectangle, A141419 is in the accumulation chain
... < A051340 < A141419 < A185874 < A185875 < A185876 < ...
(See A144112 for the definition of accumulation array.)
row 1: A000027
col 1: A000217
diag (1,5,...): A000326 (pentagonal numbers)
diag (2,7,...): A005449 (second pentagonal numbers)
diag (3,9,...): A045943 (triangular matchstick numbers)
diag (4,11,...): A115067
diag (5,13,...): A140090
diag (6,15,...): A140091
diag (7,17,...): A059845
diag (8,19,...): A140672
(End)
Let N=2*n+1 and k=1,2,...,n. Let A_{N,n-1} = [0,...,0,1; 0,...,0,1,1; ...; 0,1,...,1; 1,...,1], an n X n unit-primitive matrix (see [Jeffery]). Let M_n=[A_{N,n-1}]^4. Then t(n,k)=[M_n](1,k), that is, the n-th row of the triangle is given by the first row of M_n. - _L. Edson Jeffery, Nov 20 2011
Conjecture. Let N=2*n+1 and k=1,...,n. Let A_{N,0}, A_{N,1}, ..., A_{N,n-1} be the n X n unit-primitive matrices (again see [Jeffery]) associated with N, and define the Chebyshev polynomials of the second kind by the recurrence U_0(x) = 1, U_1(x) = 2*x and U_r(x) = 2*x*U_(r-1)(x) - U_(r-2)(x) (r>1). Define the column vectors V_(k-1) = (U_(k-1)(cos(Pi/N)), U_(k-1)(cos(3*Pi/N)), ..., U_(k-1)(cos((2*n-1)*Pi/N)))^T, where T denotes matrix transpose. Let S_N = [V_0, V_1, ..., V_(n-1)] be the n X n matrix formed by taking V_(k-1) as column k-1. Let X_N = [S_N]^T*S_N, and let [X_N](i,j) denote the entry in row i and column j of X_N, i,j in {0,...,n-1}. Then t(n,k) = [X_N](k-1,k-1), and row n of the triangle is given by the main diagonal entries of X_N. Remarks: Hence t(n,k) is the sum of squares t(n,k) = sum[m=1,...,n (U_(k-1)(cos((2*m-1)*Pi/N)))^2]. Finally, this sequence is related to A057059, since X_N = [sum_{m=1,...,n} A057059(n,m)*A_{N,m-1}] is also an integral linear combination of unit-primitive matrices from the N-th set. - L. Edson Jeffery, Jan 20 2012
Row sums: n*(n+1)*(2*n+1)/6. - L. Edson Jeffery, Jan 25 2013
n-th row = partial sums of n-th row of A004736. - Reinhard Zumkeller, Aug 04 2014
T(n,k) is the number of distinct sums made by at most k elements in {1, 2, ... n}, for 1 <= k <= n, e.g., T(6,2) = the number of distinct sums made by at most 2 elements in {1,2,3,4,5,6}. The sums range from 1, to 5+6=11. So there are 11 distinct sums. - Derek Orr, Nov 26 2014
A number n occurs in this sequence A001227(n) times, the number of odd divisors of n, see A209260. - Hartmut F. W. Hoft, Apr 14 2016
Conjecture: 2*n + 1 is composite if and only if gcd(t(n,m),m) != 1, for some m. - L. Edson Jeffery, Jan 30 2018
From Peter Munn, Aug 21 2019 in respect of the sequence read as a triangle: (Start)
A number m can be found in column k if and only if A286013(m, k) is nonzero, in which case m occurs in column k on row A286013(m, k).
The first occurrence of m is in row A212652(m) column A109814(m), which is the rightmost column in which m occurs. This occurrence determines where m appears in A209260. The last occurrence of m is in row m column 1.
Viewed as a sequence of rows, consider the subsequences (of rows) that contain every positive integer. The lexicographically latest of these subsequences consists of the rows with row numbers in A270877; this is the only one that contains its own row numbers only once.
(End)

Examples

			As a triangle:
   1,
   2,  3,
   3,  5,  6,
   4,  7,  9, 10,
   5,  9, 12, 14, 15,
   6, 11, 15, 18, 20, 21,
   7, 13, 18, 22, 25, 27, 28,
   8, 15, 21, 26, 30, 33, 35, 36,
   9, 17, 24, 30, 35, 39, 42, 44, 45,
  10, 19, 27, 34, 40, 45, 49, 52, 54, 55;
As a rectangle:
   1   2   3   4   5   6   7   8   9  10
   3   5   7   9  11  13  15  17  19  21
   6   9  12  15  18  21  24  27  30  33
  10  14  18  22  26  30  34  38  42  46
  15  20  25  30  35  40  45  50  55  60
  21  27  33  39  45  51  57  63  69  75
  28  35  42  49  56  63  70  77  84  91
  36  44  52  60  68  76  84  92 100 108
  45  54  63  72  81  90  99 108 117 126
  55  65  75  85  95 105 115 125 135 145
Since the odd divisors of 15 are 1, 3, 5 and 15, number 15 appears four times in the triangle at t(3+(5-1)/2, 5) in column 5 since 5+1 <= 2*3, t(5+(3-1)/2, 3), t(1+(15-1)/2, 2*1) in column 2 since 15+1 > 2*1, and t(15+(1-1)/2, 1). - _Hartmut F. W. Hoft_, Apr 14 2016
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.

Crossrefs

Cf. A000330 (row sums), A004736, A057059, A070543.
A144112, A051340, A141419, A185874, A185875, A185876 are accumulation chain related.
A141418 is a variant.
Cf. A001227, A209260. - Hartmut F. W. Hoft, Apr 14 2016
A109814, A212652, A270877, A286013 relate to where each natural number appears in this sequence.
A000027, A000217, A000326, A005449, A045943, A059845, A115067, A140090, A140091, A140672 are rows, columns or diagonals - refer to comments.

Programs

  • Haskell
    a141419 n k =  k * (2 * n - k + 1) `div` 2
    a141419_row n = a141419_tabl !! (n-1)
    a141419_tabl = map (scanl1 (+)) a004736_tabl
    -- Reinhard Zumkeller, Aug 04 2014
  • Maple
    a:=(n,k)->k*n-binomial(k,2): seq(seq(a(n,k),k=1..n),n=1..12); # Muniru A Asiru, Oct 14 2018
  • Mathematica
    T[n_, m_] = m*(2*n - m + 1)/2; a = Table[Table[T[n, m], {m, 1, n}], {n, 1, 10}]; Flatten[a]

Formula

t(n,m) = m*(2*n - m + 1)/2.
t(n,m) = A000217(n) - A000217(n-m). - L. Edson Jeffery, Jan 16 2013
Let v = d*h with h odd be an integer factorization, then v = t(d+(h-1)/2, h) if h+1 <= 2*d, and v = t(d+(h-1)/2, 2*d) if h+1 > 2*d; see A209260. - Hartmut F. W. Hoft, Apr 14 2016
G.f.: y*(-x + y)/((-1 + x)^2*(-1 + y)^3). - Stefano Spezia, Oct 14 2018
T(n, 2) = A060747(n) for n > 1. T(n, 3) = A008585(n - 1) for n > 2. T(n, 4) = A016825(n - 2) for n > 3. T(n, 5) = A008587(n - 2) for n > 4. T(n, 6) = A016945(n - 3) for n > 5. T(n, 7) = A008589(n - 3) for n > 6. T(n, 8) = A017113(n - 4) for n > 7.r n > 5. T(n, 7) = A008589(n - 3) for n > 6. T(n, 8) = A017113(n - 4) for n > 7. T(n, 9) = A008591(n - 4) for n > 8. T(n, 10) = A017329(n - 5) for n > 9. T(n, 11) = A008593(n - 5) for n > 10. T(n, 12) = A017593(n - 6) for n > 11. T(n, 13) = A008595(n - 6) for n > 12. T(n, 14) = A147587(n - 7) for n > 13. T(n, 15) = A008597(n - 7) for n > 14. T(n, 16) = A051062(n - 8) for n > 15. T(n, 17) = A008599(n - 8) for n > 16. - Stefano Spezia, Oct 14 2018
T(2*n-k, k) = A070543(n, k). - Peter Munn, Aug 21 2019

Extensions

Simpler name by Stefano Spezia, Oct 14 2018

A070435 a(n) = n^2 mod 12, or alternately n^4 mod 12.

Original entry on oeis.org

0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Comments

Period 6: repeat [0,1,4,9,4,1].
Occurs in Mariotte reference, pp. 511-512. Consider waterjets of heights 0,5,10, ... = A008587 up to 100 pieds (feet). a(n) is the difference in pouces (inches) between tank's heights (in feet and inches) and part in feet (0,5,10,15,21,..). Row with 0's is implicit. - Paul Curtz, Nov 18 2008
a(m*n) = a(m)*a(n) mod 12; a(6*n+k) = a(6*n-k) for k <= 6*n. - Reinhard Zumkeller, Apr 24 2009
n^z mod 12, if z even number. Example: n^180 mod 12. etc... - Zerinvary Lajos, Nov 06 2009
Equivalently: n^(2*m + 2) mod 12. - G. C. Greubel, Apr 01 2016

References

  • Edme Mariotte, Règles pour les jets d'eau, pp. 508-518. In Divers ouvrages de mathématique et de physique par Messieurs de l'Académie Royale des Sciences, 6, 518, 1 p., Paris, 1693. Edme Mariotte (1620-1684) is known for the perfect gas law (1676, Essai sur l'air), but later than Robert Boyle (1662). - Paul Curtz, Nov 18 2008

Crossrefs

Programs

Formula

G.f.: x*(1 + 4*x + 9*x^2 + 4*x^3 + x^4)/((1 - x)*(1 + x)*(1 + x + x^2)*(1 - x + x^2)). - R. J. Mathar, Jul 23 2009
a(n) = (1/6)*(19 - 3*(-1)^n - 24*cos(n*Pi/3) + 8*cos(2*n*Pi/3)). - G. C. Greubel, Apr 01 2016
a(n) = A260686(n)^2. - Wesley Ivan Hurt, Apr 01 2016

Extensions

Incorrect g.f. removed by Georg Fischer, May 15 2019

A016850 a(n) = (5*n)^2.

Original entry on oeis.org

0, 25, 100, 225, 400, 625, 900, 1225, 1600, 2025, 2500, 3025, 3600, 4225, 4900, 5625, 6400, 7225, 8100, 9025, 10000, 11025, 12100, 13225, 14400, 15625, 16900, 18225, 19600, 21025, 22500, 24025, 25600, 27225, 28900, 30625, 32400, 34225, 36100, 38025, 40000, 42025
Offset: 0

Views

Author

Keywords

Comments

If we define C(n) = (5*n)^2 (n > 0), the sequence is the first "square-sequence" such that for every n there exists p such that C(n) = C(p) + C(p+n). We observe in fact that p = 3*n because 25 = 3^2 + 4^2. The sequence without 0 is linked with the first nontrivial solution (trivial: n^2 = 0^2 + n^2) of the equation X^2 = 2*Y^2 + 2*n^2 where X = 2*k and Y = 2*p + n which is equivalent to k^2 = p^2 + (p+n)^2 for n given. The second such "square-sequence" is (29*n)^2 (n > 0) because 29^2 = 20^2 + 21^2 and with this relation we obtain (29*n)^2 = (20*n)^2 + (20*n+n)^2. - Richard Choulet, Dec 23 2007

Crossrefs

Cf. A000290, A033429, A053742 (first differences), A008587, A008607.
Similar sequences listed in A244630.

Programs

Formula

a(n) = 25*n^2 = 25*A000290(n) = 5*A033429(n). - Omar E. Pol, Jul 03 2014
From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/150.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/300.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/5)/(Pi/5).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/5)/(Pi/5) = 5*sqrt((5-sqrt(5))/2)/(2*Pi). (End)
a(n) = Sum_{i=0..n-1} A053742(i). - John Elias, Jun 30 2021
G.f.: 25*x*(1 + x)/(1 - x)^3. - Stefano Spezia, Jul 08 2023
From Elmo R. Oliveira, Nov 30 2024: (Start)
E.g.f.: 25*x*(1 + x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = n*A008607(n) = A000290(A008587(n)) = A008587(n)^2. (End)

A283118 a(n) = sigma(5*n).

Original entry on oeis.org

6, 18, 24, 42, 31, 72, 48, 90, 78, 93, 72, 168, 84, 144, 124, 186, 108, 234, 120, 217, 192, 216, 144, 360, 156, 252, 240, 336, 180, 372, 192, 378, 288, 324, 248, 546, 228, 360, 336, 465, 252, 576, 264, 504, 403, 432, 288, 744, 342, 468, 432, 588, 324, 720
Offset: 1

Views

Author

Seiichi Manyama, Mar 01 2017

Keywords

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), this sequence (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).
Cf. A008587.

Programs

Formula

a(n) = A000203(5*n).
Sum_{k=1..n} a(k) = (29*Pi^2/60) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

A043040 Numbers that are palindromic and divisible by 5.

Original entry on oeis.org

0, 5, 55, 505, 515, 525, 535, 545, 555, 565, 575, 585, 595, 5005, 5115, 5225, 5335, 5445, 5555, 5665, 5775, 5885, 5995, 50005, 50105, 50205, 50305, 50405, 50505, 50605, 50705, 50805, 50905, 51015, 51115, 51215, 51315, 51415, 51515, 51615, 51715, 51815, 51915
Offset: 1

Views

Author

Keywords

Comments

Or, 0 and numbers that are palindromic and begin with 5.

Crossrefs

Programs

  • Mathematica
    palQ[n_Integer, base_Integer] := Module[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]];
    Join[{0},Select[Range[5,100000,5], IntegerDigits[#][[1]] == 5 && palQ[#, 10] &]] (* T. D. Noe, Mar 12 2013 *)
    Select[5*Range[0,11000],IntegerDigits[#]==Reverse[IntegerDigits[#]]&] (* Harvey P. Dale, Nov 29 2015 *)

Extensions

Edited to include a(1) = 0 by Paolo Xausa, Jul 07 2025

A090298 Permutation of natural numbers generated by 5-row array shown below.

Original entry on oeis.org

1, 9, 2, 11, 8, 3, 19, 12, 7, 4, 21, 18, 13, 6, 5, 29, 22, 17, 14, 10, 31, 28, 23, 16, 15, 39, 32, 27, 24, 20, 41, 38, 33, 26, 25, 49, 42, 37, 34, 30, 51, 48, 43, 36, 35, 59, 52, 47, 44, 40, 61, 58, 53, 46, 45, 69, 62, 57, 54, 50, 71, 68, 63, 56, 55, 79, 72, 67, 64, 60, 81, 78
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 25 2004

Keywords

Comments

1 9 11 19 21 29 31 39... (A090771)
2 8 12 18 22 28 32 38... (A090772)
3 7 13 17 23 27 33 37... (A063226)
4 6 14 16 24 26 34 36... (A090773)
5 10 15 20 25 30 35 40... (A008587, excluding initial term)
-----------------------------------------------------------
For such arrays A_k, here A_5, see a W. Lang comment on A113807, the A_7 case. However, in order to obtain A_5 one should take the last row as the first one after adding a 0 in front (thus getting a permutation of the nonnegative integers). - Wolfdieter Lang, Feb 02 2012

Crossrefs

Extensions

More terms from Ray Chandler, Feb 01 2004

A212700 a(n) = 5*n*6^(n-1).

Original entry on oeis.org

5, 60, 540, 4320, 32400, 233280, 1632960, 11197440, 75582720, 503884800, 3325639680, 21767823360, 141490851840, 914248581120, 5877312307200, 37614798766080, 239794342133760, 1523399350026240, 9648195883499520, 60935974001049600, 383896636206612480, 2413064570441564160
Offset: 1

Views

Author

Stanislav Sykora, May 25 2012

Keywords

Comments

Main transitions in systems of n particles with spin 5/2.
Refer to the general explanation in A212697.
This particular sequence is obtained for base b=6, corresponding to spin S=(b-1)/2=5/2.
Arithmetic derivative of 6^n: a(n) = A003415(6^n). - Bruno Berselli, Oct 22 2013

Crossrefs

Cf. A001787, A212697, A212698, A212699, A212701, A212702, A212703, A212704 (b = 2, 3, 4, 5, 7, 8, 9, 10).

Programs

  • Mathematica
    Rest@ CoefficientList[Series[5 x/(6 x - 1)^2, {x, 0, 18}], x] (* or *)
    Array[5 # 6^(# - 1) &, 18] (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    mtrans(n, b) = n*(b-1)*b^(n-1);
    for (n=1, 100, write("b212700.txt", n, " ", mtrans(n, 6)))

Formula

a(n) = n*(b-1)*b^(n-1): for this sequence, set b=6.
From R. J. Mathar, Oct 15 2013: (Start)
G.f.: 5*x/(6*x-1)^2.
a(n) = 5*A053469(n). (End)
From Elmo R. Oliveira, May 14 2025: (Start)
E.g.f.: 5*x*exp(6*x).
a(n) = A008587(n)*A000400(n-1).
a(n) = 12*a(n-1) - 36*a(n-2) for n > 2. (End)

A131853 Numbers m such that z(m)=(0,0) with z as defined in A131851.

Original entry on oeis.org

0, 5, 10, 15, 20, 30, 40, 45, 60, 65, 75, 80, 85, 90, 95, 105, 120, 125, 130, 135, 150, 160, 165, 170, 175, 180, 190, 195, 210, 215, 225, 235, 240, 245, 250, 255, 260, 270, 300, 320, 325, 330, 335, 340, 350, 360, 365, 380, 390, 420, 430, 450, 455, 470, 480, 485
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Comments

Intersection of A131854 and A131855: A131851(a(n))=0, A131852(a(n))=0;
conjecture: a(n) mod 5 = 0.

Crossrefs

Programs

  • Mathematica
    z[n_] := z[n] = If[n == 0, 0, z[Floor[n/2]] I + Mod[n, 2]];
    Flatten[Position[Table[z[n], {n, 0, 500}], 0] - 1] (* Jean-François Alcover, Oct 12 2021 *)

A191703 Dispersion of A016861, (5k+1), by antidiagonals.

Original entry on oeis.org

1, 6, 2, 31, 11, 3, 156, 56, 16, 4, 781, 281, 81, 21, 5, 3906, 1406, 406, 106, 26, 7, 19531, 7031, 2031, 531, 131, 36, 8, 97656, 35156, 10156, 2656, 656, 181, 41, 9, 488281, 175781, 50781, 13281, 3281, 906, 206, 46, 10, 2441406, 878906, 253906, 66406, 16406
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1...6... 31....156...781
2...11...56....281...1406
3...16...81....406...2031
4...21...106...531...2656
5...26...131...656...3281
7...36...181...906...4531
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    f[n_] := 5n+1
    Table[f[n], {n, 1, 30}]  (* A016861 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191703 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191703 *)
Previous Showing 31-40 of 107 results. Next