A044102
Multiples of 36.
Original entry on oeis.org
0, 36, 72, 108, 144, 180, 216, 252, 288, 324, 360, 396, 432, 468, 504, 540, 576, 612, 648, 684, 720, 756, 792, 828, 864, 900, 936, 972, 1008, 1044, 1080, 1116, 1152, 1188, 1224, 1260, 1296, 1332, 1368, 1404, 1440, 1476, 1512, 1548, 1584, 1620, 1656, 1692, 1728
Offset: 0
-
a:=[0,36];; for n in [3..50] do a[n]:=2*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Oct 25 2018
-
a044102 = (* 36)
a044102_list = [0, 36 ..] -- Reinhard Zumkeller, Nov 10 2013
-
[36*n: n in [0..50]]; // Vincenzo Librandi, May 20 2014
-
seq(coeff(series(36*x/(1-x)^2,x,n+1), x, n), n = 0 .. 50); # Muniru A Asiru, Oct 25 2018
-
Range[0, 2000, 36] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
CoefficientList[Series[36 x/(1 - x)^2, {x, 0, 100}], x] (* Vincenzo Librandi, May 20 2014 *)
-
a(n)=36*n \\ Charles R Greathouse IV, Oct 07 2015
A057355
a(n) = floor(3*n/5).
Original entry on oeis.org
0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 18, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 30, 30, 31, 31, 32, 33, 33, 34, 34, 35, 36, 36, 37, 37, 38, 39, 39, 40, 40, 41, 42, 42, 43, 43
Offset: 0
- N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.
Floors of other ratios:
A004526,
A002264,
A002265,
A004523,
A057353,
A057354,
A057355,
A057356,
A057357,
A057358,
A057359,
A057360,
A057361,
A057362,
A057363,
A057364,
A057365,
A057366,
A057367.
A063265
Septinomial (also called heptanomial) coefficient array.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 28, 33, 36, 37, 36, 33, 28, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 84, 116, 149, 180, 206, 224, 231, 224, 206, 180, 149, 116, 84, 56, 35
Offset: 0
Triangle begins:
{1};
{1, 1, 1, 1, 1, 1, 1};
{1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1};
...
N7(k,x)= 1 for k=0..6, N7(7,x)= 6-15*x+20*x^2-15*x^3+6*x^4-x^5 (from A063266).
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77,78.
-
#Define the r-nomial coefficients for r = 1, 2, 3, ...
rnomial := (r,n,k) -> add((-1)^i*binomial(n,i)*binomial(n+k-1-r*i,n-1), i = 0..floor(k/r)):
#Display the 7-nomials as a table
r := 7: rows := 10:
for n from 0 to rows do
seq(rnomial(r,n,k), k = 0..(r-1)*n)
end do;
# Peter Bala, Sep 07 2013
-
Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)^n, x], {n, 0, 25}]] (* T. D. Noe, Apr 04 2011 *)
A119313
Numbers with a prime as third-smallest divisor.
Original entry on oeis.org
6, 10, 12, 14, 15, 18, 21, 22, 24, 26, 30, 33, 34, 35, 36, 38, 39, 42, 45, 46, 48, 50, 51, 54, 55, 57, 58, 60, 62, 63, 65, 66, 69, 70, 72, 74, 75, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 96, 98, 102, 105, 106, 108, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126
Offset: 1
a(1) = A087134(3) = 6.
From _Gus Wiseman_, Oct 19 2019: (Start)
The sequence of terms together with their divisors begins:
6: {1,2,3,6}
10: {1,2,5,10}
12: {1,2,3,4,6,12}
14: {1,2,7,14}
15: {1,3,5,15}
18: {1,2,3,6,9,18}
21: {1,3,7,21}
22: {1,2,11,22}
24: {1,2,3,4,6,8,12,24}
26: {1,2,13,26}
30: {1,2,3,5,6,10,15,30}
33: {1,3,11,33}
34: {1,2,17,34}
35: {1,5,7,35}
36: {1,2,3,4,6,9,12,18,36}
38: {1,2,19,38}
39: {1,3,13,39}
42: {1,2,3,6,7,14,21,42}
45: {1,3,5,9,15,45}
46: {1,2,23,46}
(End)
Numbers whose third-largest divisor is prime are
A328338.
Second-smallest divisor is
A020639.
Cf.
A000005,
A000040,
A001221,
A020639,
A027750,
A033676,
A060775,
A067029,
A088725,
A119288,
A328189.
-
q:= n-> (l-> nops(l)>2 and isprime(l[3]))(
sort([numtheory[divisors](n)[]])):
select(q, [$1..200])[]; # Alois P. Heinz, Oct 19 2019
-
Select[Range[100],Length[Divisors[#]]>2&&PrimeQ[Divisors[#][[3]]]&] (* Gus Wiseman, Oct 15 2019 *)
Select[Range[130], Length[f = FactorInteger[#]] > 1 && (f[[1, 2]] == 1 || f[[1, 1]]^2 > f[[2, 1]]) &] (* Amiram Eldar, Jul 02 2022 *)
A134492
a(n) = Fibonacci(6*n).
Original entry on oeis.org
0, 8, 144, 2584, 46368, 832040, 14930352, 267914296, 4807526976, 86267571272, 1548008755920, 27777890035288, 498454011879264, 8944394323791464, 160500643816367088, 2880067194370816120, 51680708854858323072, 927372692193078999176, 16641027750620563662096
Offset: 0
Cf.
A000032,
A000045,
A008588,
A049660,
A079343,
A014445,
A014448,
A134493,
A134494,
A134495,
A103134,
A134497,
A134498.
-
[Fibonacci(6*n): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Table[Fibonacci[6n], {n, 0, 30}]
LinearRecurrence[{18,-1},{0,8},30] (* Harvey P. Dale, Aug 15 2017 *)
-
numlib::fibonacci(6*n) $ n = 0..25; // Zerinvary Lajos, May 09 2008
-
a(n)=fibonacci(6*n) \\ Charles R Greathouse IV, Sep 16 2015
-
concat(0, Vec(8*x/(1-18*x+x^2) + O(x^20))) \\ Colin Barker, Jan 24 2016
-
[fibonacci(6*n) for n in range(0, 17)] # Zerinvary Lajos, May 15 2009
A276378
Numbers k such that 6*k is squarefree.
Original entry on oeis.org
1, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 37, 41, 43, 47, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 127, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 161, 163, 167, 173, 179, 181, 185, 187, 191, 193, 197, 199, 203, 205, 209, 211
Offset: 1
5 is in this sequence because 6*5 = 30 = 2*3*5 is squarefree.
-
[n: n in [1..230] | IsSquarefree(6*n)];
-
select(numtheory:-issqrfree, [seq(seq(6*i+j,j=[1,5]),i=0..100)]); # Robert Israel, Sep 02 2016
-
Select[Range@ 212, SquareFreeQ[6 #] &] (* Michael De Vlieger, Sep 02 2016 *)
-
is(n) = issquarefree(6*n) \\ Felix Fröhlich, Sep 02 2016
A046953
Numbers k such that 6*k - 1 is composite.
Original entry on oeis.org
6, 11, 13, 16, 20, 21, 24, 26, 27, 31, 34, 35, 36, 37, 41, 46, 48, 50, 51, 54, 55, 56, 57, 61, 62, 63, 66, 68, 69, 71, 73, 76, 79, 81, 83, 86, 88, 89, 90, 91, 92, 96, 97, 101, 102, 104, 105, 106, 111, 112, 115, 116, 118, 119, 121, 122, 123, 125, 126, 128
Offset: 1
a(1)=6 because 6*6 - 1 = 35, which is composite.
-
Filtered([1..200], k-> not IsPrime(6*k-1)) # G. C. Greubel, Feb 21 2019
-
a046953 n = a046953_list !! (n-1)
a046953_list = map (`div` 6) $
filter ((== 0) . a010051' . subtract 1) [6,12..]
-- Reinhard Zumkeller, Jul 13 2014
-
[n: n in [1..200] | not IsPrime(6*n-1)]; // G. C. Greubel, Feb 21 2019
-
remove(k-> isprime(6*k-1), [$1..130])[]; # Muniru A Asiru, Feb 22 2019
-
Select[Range[200],!PrimeQ[6#-1]&] (* Vladimir Joseph Stephan Orlovsky, Feb 25 2011 *)
-
is(n)=!isprime(6*n-1) \\ Charles R Greathouse IV, Aug 01 2016
-
[n for n in (1..200) if not is_prime(6*n-1)] # G. C. Greubel, Feb 21 2019
A135628
Multiples of 28.
Original entry on oeis.org
0, 28, 56, 84, 112, 140, 168, 196, 224, 252, 280, 308, 336, 364, 392, 420, 448, 476, 504, 532, 560, 588, 616, 644, 672, 700, 728, 756, 784, 812, 840, 868, 896, 924, 952, 980, 1008, 1036, 1064, 1092, 1120, 1148, 1176, 1204, 1232, 1260, 1288, 1316, 1344, 1372
Offset: 0
A346875
Irregular triangle read by rows in which row n lists the row A000384(n) of A237591, n >= 1.
Original entry on oeis.org
1, 4, 1, 1, 8, 3, 2, 1, 1, 15, 5, 3, 2, 1, 1, 1, 23, 8, 5, 2, 2, 2, 1, 1, 1, 34, 11, 6, 4, 3, 2, 2, 1, 1, 1, 1, 46, 16, 8, 5, 4, 2, 3, 1, 2, 1, 1, 1, 1, 61, 20, 11, 6, 5, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 77, 26, 14, 8, 5, 5, 3, 2, 3, 2, 1, 2, 1, 1, 1, 1, 1, 96, 32, 16
Offset: 1
Triangle begins:
1;
4, 1, 1;
8, 3, 2, 1, 1;
15, 5, 3, 2, 1, 1, 1;
23, 8, 5, 2, 2, 2, 1, 1, 1;
34, 11, 6, 4, 3, 2, 2, 1, 1, 1, 1;
46, 16, 8, 5, 4, 2, 3, 1, 2, 1, 1, 1, 1;
61, 20, 11, 6, 5, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1;
77, 26, 14, 8, 5, 5, 3, 2, 3, 2, 1, 2, 1, 1, 1, 1, 1;
96, 32, 16, 10, 7, 5, 4, 3, 3, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1;
...
Illustration of initial terms:
Column H gives the nonzero hexagonal numbers (A000384).
Column S gives the sum of the divisors of the hexagonal numbers which equals the area (and the number of cells) of the associated diagram.
-------------------------------------------------------------------------
n H S Diagram
-------------------------------------------------------------------------
_ _ _ _
1 1 1 |_| | | | | | |
1 | | | | | |
_ _| | | | | |
| _| | | | |
_ _ _| _| | | | |
2 6 12 |_ _ _ _| 1 | | | |
4 1 | | | |
_ _ _|_| | |
_ _| | | |
| _| | |
_| _| | |
|_ _|1 1 | |
| 2 | |
_ _ _ _ _ _ _ _|4 _ _ _ _ _| |
3 15 24 |_ _ _ _ _ _ _ _| | _ _ _ _ _|
8 | |
_ _| |
_ _| _ _|
| _|
_| _|
| _|1 1
_ _ _| | 1
| _ _ _|2
| | 3
| |
| |5
_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
4 28 56 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
15
.
A008881
a(n) = Product_{j=0..5} floor((n+j)/6).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64, 96, 144, 216, 324, 486, 729, 972, 1296, 1728, 2304, 3072, 4096, 5120, 6400, 8000, 10000, 12500, 15625, 18750, 22500, 27000, 32400, 38880, 46656, 54432, 63504, 74088, 86436, 100842, 117649, 134456, 153664, 175616, 200704
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,5,-10,5,0,0,0,-10,20,-10,0,0,0,10,-20,10,0,0,0,-5,10,-5,0,0,0,1,-2,1).
-
List([0..50], n-> Product([0..5], j-> Int((n+j)/6))); # G. C. Greubel, Sep 13 2019
-
[(&*[Floor((n+j)/6): j in [0..5]]): n in [0..50]]; // G. C. Greubel, Sep 13 2019
-
seq( mul( floor((n+i)/6), i=0..5 ), n=0..80);
-
Product[Floor[(Range[51]+j-2)/6], {j,6}] (* G. C. Greubel, Sep 13 2019 *)
-
vector(50, n, prod(j=0,5, (n+j)\6) ) \\ G. C. Greubel, Sep 13 2019
-
[product(floor((n+j)/6) for j in (0..5)) for n in (0..50)] # G. C. Greubel, Sep 13 2019
Comments