cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 79 results. Next

A017461 a(n) = 11*n + 6.

Original entry on oeis.org

6, 17, 28, 39, 50, 61, 72, 83, 94, 105, 116, 127, 138, 149, 160, 171, 182, 193, 204, 215, 226, 237, 248, 259, 270, 281, 292, 303, 314, 325, 336, 347, 358, 369, 380, 391, 402, 413, 424, 435, 446, 457, 468, 479, 490, 501, 512, 523, 534, 545, 556, 567, 578, 589
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences with closed form (2*k-1)*n+k listed in A269044.
Powers of the form (11*n+6)^m: this sequence (m=1), A017462 (m=2), A017463 (m=3), A017464 (m=4), A017465 (m=5), A017466 (m=6), A017467 (m=7), A017468 (m=8), A017469 (m=9), A017470 (m=10), A017471 (m=11), A017472 (m=12).

Programs

Formula

a(0)=6, a(1)=17; for n>1, a(n) = 2*a(n-1) - a(n-2). - Harvey P. Dale, Apr 14 2015
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (6 + 5*x)/(1-x)^2.
E.g.f.: (6 + 11*x)*exp(x). (End)
a(n) = A141694(n)/2. - Elmo R. Oliveira, Apr 11 2025

A017437 a(n) = 11*n + 4.

Original entry on oeis.org

4, 15, 26, 37, 48, 59, 70, 81, 92, 103, 114, 125, 136, 147, 158, 169, 180, 191, 202, 213, 224, 235, 246, 257, 268, 279, 290, 301, 312, 323, 334, 345, 356, 367, 378, 389, 400, 411, 422, 433, 444, 455, 466, 477, 488, 499, 510, 521, 532, 543, 554, 565, 576, 587
Offset: 0

Views

Author

Keywords

Comments

These numbers do not occur in A000045 (Fibonacci numbers). - Arkadiusz Wesolowski, Jan 08 2012

Crossrefs

Powers of the form (11*n+4)^m: this sequence (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).

Programs

Formula

a(0)=4, a(1)=15, a(n) = 2*a(n-1) - a(n-2). - Harvey P. Dale, May 19 2012
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (4 + 7*x)/(1-x)^2.
E.g.f.: (4 + 11*x)*exp(x). (End)

A017449 a(n) = 11*n + 5.

Original entry on oeis.org

5, 16, 27, 38, 49, 60, 71, 82, 93, 104, 115, 126, 137, 148, 159, 170, 181, 192, 203, 214, 225, 236, 247, 258, 269, 280, 291, 302, 313, 324, 335, 346, 357, 368, 379, 390, 401, 412, 423, 434, 445, 456, 467, 478, 489, 500, 511, 522, 533, 544, 555, 566, 577, 588
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+5)^m: this sequence (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), A017454 (m=6), A017455 (m=7), A017456 (m=8), A017457 (m=9), A017458 (m=10), A017459 (m=11), A017460 (m=12).

Programs

Formula

From G. C. Greubel, Sep 18 2019: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (5 + 6*x)/(1-x)^2.
E.g.f.: (5 + 11*x)*exp(x). (End)

A141419 Triangle read by rows: T(n, k) = A000217(n) - A000217(n - k) with 1 <= k <= n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 4, 7, 9, 10, 5, 9, 12, 14, 15, 6, 11, 15, 18, 20, 21, 7, 13, 18, 22, 25, 27, 28, 8, 15, 21, 26, 30, 33, 35, 36, 9, 17, 24, 30, 35, 39, 42, 44, 45, 10, 19, 27, 34, 40, 45, 49, 52, 54, 55
Offset: 1

Views

Author

Roger L. Bagula, Aug 05 2008

Keywords

Comments

As a rectangle, the accumulation array of A051340.
From Clark Kimberling, Feb 05 2011: (Start)
Here all the weights are divided by two where they aren't in Cahn.
As a rectangle, A141419 is in the accumulation chain
... < A051340 < A141419 < A185874 < A185875 < A185876 < ...
(See A144112 for the definition of accumulation array.)
row 1: A000027
col 1: A000217
diag (1,5,...): A000326 (pentagonal numbers)
diag (2,7,...): A005449 (second pentagonal numbers)
diag (3,9,...): A045943 (triangular matchstick numbers)
diag (4,11,...): A115067
diag (5,13,...): A140090
diag (6,15,...): A140091
diag (7,17,...): A059845
diag (8,19,...): A140672
(End)
Let N=2*n+1 and k=1,2,...,n. Let A_{N,n-1} = [0,...,0,1; 0,...,0,1,1; ...; 0,1,...,1; 1,...,1], an n X n unit-primitive matrix (see [Jeffery]). Let M_n=[A_{N,n-1}]^4. Then t(n,k)=[M_n](1,k), that is, the n-th row of the triangle is given by the first row of M_n. - _L. Edson Jeffery, Nov 20 2011
Conjecture. Let N=2*n+1 and k=1,...,n. Let A_{N,0}, A_{N,1}, ..., A_{N,n-1} be the n X n unit-primitive matrices (again see [Jeffery]) associated with N, and define the Chebyshev polynomials of the second kind by the recurrence U_0(x) = 1, U_1(x) = 2*x and U_r(x) = 2*x*U_(r-1)(x) - U_(r-2)(x) (r>1). Define the column vectors V_(k-1) = (U_(k-1)(cos(Pi/N)), U_(k-1)(cos(3*Pi/N)), ..., U_(k-1)(cos((2*n-1)*Pi/N)))^T, where T denotes matrix transpose. Let S_N = [V_0, V_1, ..., V_(n-1)] be the n X n matrix formed by taking V_(k-1) as column k-1. Let X_N = [S_N]^T*S_N, and let [X_N](i,j) denote the entry in row i and column j of X_N, i,j in {0,...,n-1}. Then t(n,k) = [X_N](k-1,k-1), and row n of the triangle is given by the main diagonal entries of X_N. Remarks: Hence t(n,k) is the sum of squares t(n,k) = sum[m=1,...,n (U_(k-1)(cos((2*m-1)*Pi/N)))^2]. Finally, this sequence is related to A057059, since X_N = [sum_{m=1,...,n} A057059(n,m)*A_{N,m-1}] is also an integral linear combination of unit-primitive matrices from the N-th set. - L. Edson Jeffery, Jan 20 2012
Row sums: n*(n+1)*(2*n+1)/6. - L. Edson Jeffery, Jan 25 2013
n-th row = partial sums of n-th row of A004736. - Reinhard Zumkeller, Aug 04 2014
T(n,k) is the number of distinct sums made by at most k elements in {1, 2, ... n}, for 1 <= k <= n, e.g., T(6,2) = the number of distinct sums made by at most 2 elements in {1,2,3,4,5,6}. The sums range from 1, to 5+6=11. So there are 11 distinct sums. - Derek Orr, Nov 26 2014
A number n occurs in this sequence A001227(n) times, the number of odd divisors of n, see A209260. - Hartmut F. W. Hoft, Apr 14 2016
Conjecture: 2*n + 1 is composite if and only if gcd(t(n,m),m) != 1, for some m. - L. Edson Jeffery, Jan 30 2018
From Peter Munn, Aug 21 2019 in respect of the sequence read as a triangle: (Start)
A number m can be found in column k if and only if A286013(m, k) is nonzero, in which case m occurs in column k on row A286013(m, k).
The first occurrence of m is in row A212652(m) column A109814(m), which is the rightmost column in which m occurs. This occurrence determines where m appears in A209260. The last occurrence of m is in row m column 1.
Viewed as a sequence of rows, consider the subsequences (of rows) that contain every positive integer. The lexicographically latest of these subsequences consists of the rows with row numbers in A270877; this is the only one that contains its own row numbers only once.
(End)

Examples

			As a triangle:
   1,
   2,  3,
   3,  5,  6,
   4,  7,  9, 10,
   5,  9, 12, 14, 15,
   6, 11, 15, 18, 20, 21,
   7, 13, 18, 22, 25, 27, 28,
   8, 15, 21, 26, 30, 33, 35, 36,
   9, 17, 24, 30, 35, 39, 42, 44, 45,
  10, 19, 27, 34, 40, 45, 49, 52, 54, 55;
As a rectangle:
   1   2   3   4   5   6   7   8   9  10
   3   5   7   9  11  13  15  17  19  21
   6   9  12  15  18  21  24  27  30  33
  10  14  18  22  26  30  34  38  42  46
  15  20  25  30  35  40  45  50  55  60
  21  27  33  39  45  51  57  63  69  75
  28  35  42  49  56  63  70  77  84  91
  36  44  52  60  68  76  84  92 100 108
  45  54  63  72  81  90  99 108 117 126
  55  65  75  85  95 105 115 125 135 145
Since the odd divisors of 15 are 1, 3, 5 and 15, number 15 appears four times in the triangle at t(3+(5-1)/2, 5) in column 5 since 5+1 <= 2*3, t(5+(3-1)/2, 3), t(1+(15-1)/2, 2*1) in column 2 since 15+1 > 2*1, and t(15+(1-1)/2, 1). - _Hartmut F. W. Hoft_, Apr 14 2016
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.

Crossrefs

Cf. A000330 (row sums), A004736, A057059, A070543.
A144112, A051340, A141419, A185874, A185875, A185876 are accumulation chain related.
A141418 is a variant.
Cf. A001227, A209260. - Hartmut F. W. Hoft, Apr 14 2016
A109814, A212652, A270877, A286013 relate to where each natural number appears in this sequence.
A000027, A000217, A000326, A005449, A045943, A059845, A115067, A140090, A140091, A140672 are rows, columns or diagonals - refer to comments.

Programs

  • Haskell
    a141419 n k =  k * (2 * n - k + 1) `div` 2
    a141419_row n = a141419_tabl !! (n-1)
    a141419_tabl = map (scanl1 (+)) a004736_tabl
    -- Reinhard Zumkeller, Aug 04 2014
  • Maple
    a:=(n,k)->k*n-binomial(k,2): seq(seq(a(n,k),k=1..n),n=1..12); # Muniru A Asiru, Oct 14 2018
  • Mathematica
    T[n_, m_] = m*(2*n - m + 1)/2; a = Table[Table[T[n, m], {m, 1, n}], {n, 1, 10}]; Flatten[a]

Formula

t(n,m) = m*(2*n - m + 1)/2.
t(n,m) = A000217(n) - A000217(n-m). - L. Edson Jeffery, Jan 16 2013
Let v = d*h with h odd be an integer factorization, then v = t(d+(h-1)/2, h) if h+1 <= 2*d, and v = t(d+(h-1)/2, 2*d) if h+1 > 2*d; see A209260. - Hartmut F. W. Hoft, Apr 14 2016
G.f.: y*(-x + y)/((-1 + x)^2*(-1 + y)^3). - Stefano Spezia, Oct 14 2018
T(n, 2) = A060747(n) for n > 1. T(n, 3) = A008585(n - 1) for n > 2. T(n, 4) = A016825(n - 2) for n > 3. T(n, 5) = A008587(n - 2) for n > 4. T(n, 6) = A016945(n - 3) for n > 5. T(n, 7) = A008589(n - 3) for n > 6. T(n, 8) = A017113(n - 4) for n > 7.r n > 5. T(n, 7) = A008589(n - 3) for n > 6. T(n, 8) = A017113(n - 4) for n > 7. T(n, 9) = A008591(n - 4) for n > 8. T(n, 10) = A017329(n - 5) for n > 9. T(n, 11) = A008593(n - 5) for n > 10. T(n, 12) = A017593(n - 6) for n > 11. T(n, 13) = A008595(n - 6) for n > 12. T(n, 14) = A147587(n - 7) for n > 13. T(n, 15) = A008597(n - 7) for n > 14. T(n, 16) = A051062(n - 8) for n > 15. T(n, 17) = A008599(n - 8) for n > 16. - Stefano Spezia, Oct 14 2018
T(2*n-k, k) = A070543(n, k). - Peter Munn, Aug 21 2019

Extensions

Simpler name by Stefano Spezia, Oct 14 2018

A017509 a(n) = 11*n + 10.

Original entry on oeis.org

10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 120, 131, 142, 153, 164, 175, 186, 197, 208, 219, 230, 241, 252, 263, 274, 285, 296, 307, 318, 329, 340, 351, 362, 373, 384, 395, 406, 417, 428, 439, 450, 461, 472, 483, 494, 505, 516, 527, 538, 549, 560, 571, 582
Offset: 0

Views

Author

Keywords

Comments

If k is any member of A045572, the sequence lists the numbers n such that (n^k+1)/11 is a nonnegative integer. See also A267541. - Bruno Berselli, Jan 16 2016

Crossrefs

Cf. A211013 (partial sums), A254322 (partial products).
Powers of the form (11*n+10)^m: this sequence (m=1), A017510 (m=2), A017511 (m=3), A017512 (m=4), A017513 (m=5), A017514 (m=6), A017515 (m=7), A017516 (m=8), A017517 (m=9), A017518 (m=10), A017519 (m=11), A017520 (m=12).

Programs

Formula

From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (10 + x)/(1-x)^2.
E.g.f.: (10 + 11*x)*exp(x).
a(n) = 2*a(n-1) - a(n-2). (End)
a(n) = A008591(n+1) + A005408(n). - Leo Tavares, Oct 25 2022

A017473 a(n) = 11*n + 7.

Original entry on oeis.org

7, 18, 29, 40, 51, 62, 73, 84, 95, 106, 117, 128, 139, 150, 161, 172, 183, 194, 205, 216, 227, 238, 249, 260, 271, 282, 293, 304, 315, 326, 337, 348, 359, 370, 381, 392, 403, 414, 425, 436, 447, 458, 469, 480, 491, 502, 513, 524, 535, 546, 557, 568, 579, 590
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+7)^m: this sequence (m=1), A017474 (m=2), A017475 (m=3), A017476 (m=4), A017477 (m=5), A017478 (m=6), A017479 (m=7), A017480 (m=8), A017481 (m=9), A017482 (m=10), A017483 (m=11), A017484 (m=12).

Programs

Formula

From Colin Barker, Jun 06 2012: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (7 + 4*x)/(1-x)^2. (End)
E.g.f.: (7 + 11*x)*exp(x). - G. C. Greubel, Sep 19 2019

A017497 a(n) = 11*n + 9.

Original entry on oeis.org

9, 20, 31, 42, 53, 64, 75, 86, 97, 108, 119, 130, 141, 152, 163, 174, 185, 196, 207, 218, 229, 240, 251, 262, 273, 284, 295, 306, 317, 328, 339, 350, 361, 372, 383, 394, 405, 416, 427, 438, 449, 460, 471, 482, 493, 504, 515, 526, 537, 548, 559, 570, 581, 592
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+9)^m: this sequence (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).

Programs

Formula

From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (9+2*x)/(1-x)^2.
E.g.f.: (9+11*x)*exp(x). (End)

A017401 a(n) = 11n + 1.

Original entry on oeis.org

1, 12, 23, 34, 45, 56, 67, 78, 89, 100, 111, 122, 133, 144, 155, 166, 177, 188, 199, 210, 221, 232, 243, 254, 265, 276, 287, 298, 309, 320, 331, 342, 353, 364, 375, 386, 397, 408, 419, 430, 441, 452, 463, 474, 485, 496, 507, 518, 529, 540, 551, 562, 573, 584, 595, 606, 617, 628, 639, 650, 661
Offset: 0

Views

Author

Keywords

Comments

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=11, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=2, a(n-1)=-charpoly(A,x^(n-1)). - Milan Janjic, Feb 21 2010
Sequence lists all nonnegative solutions to x^k == 1 (mod 11), where k is a member of A045572. - Bruno Berselli, Jan 18 2016

Crossrefs

Programs

Formula

G.f.: (1+10*x)/(1-x)^2.
E.g.f.: exp(x)*(1 + 11*x). - Stefano Spezia, Oct 08 2022

A083852 Decimal palindromes that are multiples of 11.

Original entry on oeis.org

0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 121, 242, 363, 484, 616, 737, 858, 979, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 3003, 3113, 3223, 3333, 3443, 3553, 3663, 3773, 3883, 3993, 4004
Offset: 1

Views

Author

Reinhard Zumkeller, May 06 2003

Keywords

Comments

A083850(a(n))>0; palindromes with even length are terms.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 5500, 11], PalindromeQ] (* Paolo Xausa, Jul 07 2025 *)
  • PARI
    forstep(k=0, 10^5, 11, d=digits(k); d==Vecrev(d) && print1(k, ", ")) \\ Jeppe Stig Nielsen, May 08 2020

A008604 Multiples of 22.

Original entry on oeis.org

0, 22, 44, 66, 88, 110, 132, 154, 176, 198, 220, 242, 264, 286, 308, 330, 352, 374, 396, 418, 440, 462, 484, 506, 528, 550, 572, 594, 616, 638, 660, 682, 704, 726, 748, 770, 792, 814, 836, 858, 880, 902, 924, 946, 968, 990, 1012, 1034, 1056, 1078, 1100, 1122, 1144
Offset: 0

Views

Author

Keywords

Comments

Even numbers for which the sum of "digits" base 100 is divisible by 11. - Daniel Forgues, Feb 22 2016

Crossrefs

Programs

Formula

G.f.: 22*x/(x-1)^2. - Vincenzo Librandi, Jun 10 2013
a(n) = A008593(2n). - Daniel Forgues, Feb 22 2016
From Wesley Ivan Hurt, May 19 2024: (Start)
a(n) = 22*n.
a(n) = 2*a(n-1) - a(n-2). (End)
E.g.f.: 22*x*exp(x). - Stefano Spezia, Mar 02 2025
Previous Showing 11-20 of 79 results. Next