cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 199 results. Next

A080101 Number of prime powers in all composite numbers between n-th prime and next prime.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 28 2003

Keywords

Comments

The maximum value of terms in the sequence, through the (10^5)th term, is 2. - Harvey P. Dale, Aug 24 2014
This is conjectured to be the maximum, see also A366833. - Gus Wiseman, Nov 06 2024

Examples

			There are two prime powers between 2179 = A000040(327) and 2203 = A000040(328): 2187 = 3^7 and 2197 = 13^3, therefore a(327) = 2, A080102(327) = 2187 and A080103(327) = 2197.
		

Crossrefs

For powers of 2 instead of primes we have A244508, see also A013597, A014210, A014234, A304521.
Adding one gives A366833.
For non-prime-powers instead of prime-powers we have A368748.
Positions of positive terms are A377057, primes A053607.
Positions of 0 are A377286.
Positions of 1 are A377287.
Positions of 2 are A377288, primes A053706.
For perfect-powers (instead of prime-powers) we have A377432.
A000015 gives the least prime-power >= n, difference A377282.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820, seconds A376596.
A031218 gives the greatest prime-power <= n, difference A276781.
A046933(n) counts the interval from A008864(n) to A006093(n+1).
A065514 gives the greatest prime-power < prime(n), difference A377289.
A246655 lists the prime-powers not including 1, complement A361102.
A345531 gives the least prime-power > prime(n), difference A377281.

Programs

  • Maple
    a := proc(n) local c, k, p: c, p := 0, ithprime(n): for k from p+1 to nextprime(p)-1 do if nops(numtheory:-factorset(k)) = 1 then c := c+1: fi: od: c: end:
    seq(a(n), n = 1 .. 105); # Lorenzo Sauras Altuzarra, Jul 08 2022
  • Mathematica
    prpwQ[n_]:=Module[{fi=FactorInteger[n]},Length[fi]==1&&fi[[1,2]]>1]; nn=600;With[{pwrs=Table[If[prpwQ[n],1,0],{n,nn}]},Table[Total[ Take[ pwrs,{Prime[n],Prime[n+1]}]],{n,PrimePi[nn]-1}]] (* Harvey P. Dale, Aug 24 2014 *)
    Table[Length[Select[Range[Prime[n]+1,Prime[n+1]-1],PrimePowerQ]],{n,30}] (* Gus Wiseman, Nov 06 2024 *)

Formula

a(n) = A366833(n) - 1. - Gus Wiseman, Nov 06 2024

A298422 Number of rooted trees with n nodes in which all positive outdegrees are the same.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 2, 20, 2, 26, 12, 53, 2, 120, 2, 223, 43, 454, 2, 1100, 11, 2182, 215, 4902, 2, 11446, 2, 24744, 1242, 56014, 58, 131258, 2, 293550, 7643, 676928, 2, 1582686, 2, 3627780, 49155, 8436382, 2, 19809464, 50, 46027323, 321202
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Comments

Row sums of A298426.

Examples

			The a(9) = 6 trees: ((((((((o)))))))), (o(o(o(oo)))), (o((oo)(oo))), ((oo)(o(oo))), (ooo(oooo)), (oooooooo).
		

Crossrefs

Programs

  • Mathematica
    srut[n_]:=srut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[srut/@c]]]/@Select[IntegerPartitions[n-1],Function[ptn,And@@(Divisible[#-1,Length[ptn]]&/@ptn)]],SameQ@@Length/@Cases[#,{},{0,Infinity}]&]];
    Table[srut[n]//Length,{n,20}]

Formula

a(n) = 2 <=> n in {A008864}. - Alois P. Heinz, Jan 20 2018

Extensions

a(44)-a(52) from Alois P. Heinz, Jan 20 2018

A366833 Number of times n appears in A362965 (number of primes <= the n-th prime power).

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Paolo Xausa, Oct 25 2023

Keywords

Comments

Conjecture: a(n) can be only 1, 2, or 3 (with the first occurrences of 3 appearing at n = 4, 9, 30, 327 and 3512).
One less than the number of prime powers between prime(n) and prime(n+1), inclusive. - Gus Wiseman, Jan 09 2025

Crossrefs

Run lengths of A362965.
Subtracting one gives A080101.
For non prime powers we have A368748.
Positions of terms > 1 are A377057.
Positions of 1 are A377286.
Positions of 2 are A377287.
For perfect powers we have A377432.
For squarefree we have A373198.
A000015 gives the least prime power >= n, difference A377282.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
A031218 gives the greatest prime power <= n, difference A276781.
A046933(n) counts the interval from A008864(n) to A006093(n+1).
A246655 lists the prime powers not including 1.
A366835 counts primes between prime powers.

Programs

  • Mathematica
    With[{upto=1000},Map[Length,Most[Split[PrimePi[Select[Range[upto],PrimePowerQ]]]]]] (* Considers prime powers up to 1000 *)

Formula

a(n) = A080101(n) + 1. - Gus Wiseman, Jan 09 2025

A110969 Length of the runs of ones in A014963.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 4, 3, 1, 3, 1, 3, 5, 1, 2, 2, 3, 1, 5, 1, 1, 5, 7, 3, 1, 3, 1, 3, 7, 3, 1, 2, 5, 1, 9, 1, 5, 5, 3, 1, 3, 5, 1, 9, 1, 3, 1, 11, 11, 3, 1, 3, 5, 1, 1, 7, 4, 5, 5, 1, 5, 3, 1, 5, 3, 13, 3, 1, 3, 13, 5, 5, 3, 1, 3, 5, 1, 5, 5, 5, 3, 5, 7, 3, 7
Offset: 1

Views

Author

Franz Vrabec, Sep 27 2005

Keywords

Comments

Unbounded sequence.
From A373669 we see that 10 first appears at a(28195574) = 10.
Also run-lengths of non-prime-powers (assuming 1 is not a prime-power), where a run of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by one. Also nonzero differences of consecutive prime-powers minus one. - Gus Wiseman, Jun 18 2024

Examples

			a(5)=2 because the fifth run of ones in A014963 is of length 2.
		

Crossrefs

Cf. A014963.
Positions of first appearances are A373670, sorted A373669.
For runs of prime-powers:
- length A174965, antiruns A373671
- min A373673, antiruns A120430
- max A373674, antiruns A006549
- sum A373675, antiruns A373576
For runs of non-prime-powers:
- length A110969 (this sequence), antiruns A373672
- min A373676, antiruns A373575
- max A373677, antiruns A255346
- sum A373678, antiruns A373679
A000961 lists all powers of primes. A246655 lists just prime-powers.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A356068 counts non-prime-powers up to n.
A361102 lists all non-prime-powers (A024619 if not including 1).
Various run-lengths: A053797, A120992, A175632, A176246.
Various antirun-lengths: A027833, A373127, A373403, A373409.

Programs

  • Mathematica
    Length /@ SplitBy[Table[Exp[MangoldtLambda[n]], {n, 400}], # != 1 &][[ ;; -1 ;; 2]] (* Michael De Vlieger, Mar 21 2024 *)
    DeleteCases[Differences[Select[Range[100],PrimePowerQ]]-1,0] (* Gus Wiseman, Jun 18 2024 *)
  • PARI
    \\ b(n) returns boolean of A014963(n) == 1.
    b(n)={my(t); !isprime(if(ispower(n, ,&t), t, n))}
    seq(n)={my(k=1, i=0, L=List()); while(#Lk, listput(L, i-k)); k = i+1)); Vec(L)} \\ Andrew Howroyd, Jan 02 2020

Extensions

Terms a(41) and beyond from Andrew Howroyd, Jan 02 2020

A246392 Numbers n such that Phi(10, n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 5, 10, 11, 12, 16, 20, 21, 22, 33, 37, 38, 43, 47, 48, 55, 71, 75, 76, 80, 81, 111, 121, 126, 131, 133, 135, 136, 141, 155, 157, 158, 165, 176, 177, 180, 203, 223, 242, 245, 251, 253, 256, 257, 258, 265, 268, 276, 286, 290, 297, 307, 322, 323, 342, 361, 363, 366, 375, 377, 385, 388, 396, 411
Offset: 1

Views

Author

Eric Chen, Nov 13 2014

Keywords

Comments

Numbers n such that (n^5+1)/(n+1) is prime, or numbers n such that A060884(n) is prime.

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), this sequence (10), A162862 (11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075 (31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078 (43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536).

Programs

  • Magma
    [n: n in [1..500]| IsPrime((n^5+1) div (n+1))]; // Vincenzo Librandi, Nov 14 2014
  • Maple
    A246392:=n->`if`(isprime((n^5+1)/(n+1)),n,NULL): seq(A246392(n), n=1..500); # Wesley Ivan Hurt, Nov 15 2014
  • Mathematica
    Select[Range[700], PrimeQ[(#^5 + 1) / (# + 1)] &] (* Vincenzo Librandi, Nov 14 2014 *)
  • PARI
    for(n=1,10^3,if(isprime(polcyclo(10,n)),print1(n,", "))); \\ Joerg Arndt, Nov 13 2014
    

A377432 Number of perfect-powers x in the range prime(n) < x < prime(n+1).

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 31 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			Between prime(4) = 7 and prime(5) = 11 we have perfect-powers 8 and 9, so a(4) = 2.
		

Crossrefs

For prime-powers instead of perfect-powers we have A080101.
Non-perfect-powers in the same range are counted by A377433.
Positions of 1 are A377434.
Positions of 0 are A377436.
Positions of terms > 1 are A377466.
For powers of 2 instead of primes we have A377467, for prime-powers A244508.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289.
A007916 lists the non-perfect-powers, differences A375706.
A046933 counts the interval from A008864(n) to A006093(n+1).
A081676 gives the greatest perfect-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.
A366833 counts prime-powers between primes, see A053706, A053607, A304521, A377286.
A377468 gives the least perfect-power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Table[Length[Select[Range[Prime[n]+1, Prime[n+1]-1],perpowQ]],{n,100}]

Formula

a(n) + A377433(n) = A046933(n) = prime(n+1) - prime(n) - 1.

A084920 a(n) = (prime(n)-1)*(prime(n)+1).

Original entry on oeis.org

3, 8, 24, 48, 120, 168, 288, 360, 528, 840, 960, 1368, 1680, 1848, 2208, 2808, 3480, 3720, 4488, 5040, 5328, 6240, 6888, 7920, 9408, 10200, 10608, 11448, 11880, 12768, 16128, 17160, 18768, 19320, 22200, 22800, 24648, 26568, 27888, 29928
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2003

Keywords

Comments

Squares of primes minus 1. - Wesley Ivan Hurt, Oct 11 2013
Integers k for which there exist exactly two positive integers b such that (k+1)/(b+1) is an integer. - Benedict W. J. Irwin, Jul 26 2016

Crossrefs

Programs

Formula

a(n) = A006093(n) * A008864(n);
a(n) = A084921(n)*2, for n > 1; a(n) = A084922(n)*6, for n > 2.
Product_{n > 0} a(n)/A066872(n) = 2/5. a(n) = A001248(n) - 1. - R. J. Mathar, Feb 01 2009
a(n) = prime(n)^2 - 1 = A001248(n) - 1. - Vladimir Joseph Stephan Orlovsky, Oct 17 2009
a(n) ~ n^2*log(n)^2. - Ilya Gutkovskiy, Jul 28 2016
a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^2*H(4*p-k^2) where H() is the Hurwitz class number and p is n-th prime. - Seiichi Manyama, Dec 31 2017
a(n) = 24 * A024702(n) for n > 2. - Jianing Song, Apr 28 2019
Sum_{n>=1} 1/a(n) = A154945. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Nov 07 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = Pi^2/6 (A013661).
Product_{n>=1} (1 - 1/a(n)) = A065469. (End)

A068361 Numbers n such that the number of squarefree numbers between prime(n) and prime(n+1) = prime(n+1)-prime(n)-1.

Original entry on oeis.org

1, 3, 10, 13, 26, 33, 60, 89, 104, 113, 116, 142, 148, 201, 209, 212, 234, 265, 268, 288, 313, 320, 332, 343, 353, 384, 398, 408, 477, 484, 498, 542, 545, 551, 577, 581, 601, 625, 636, 671, 719, 723, 726, 745, 794, 805, 815, 862, 864, 884, 944, 964, 995, 1054
Offset: 1

Views

Author

Benoit Cloitre, Feb 28 2002

Keywords

Comments

Also numbers k such that all numbers from prime(k) to prime(k+1) are squarefree. All such primes are twins, so this is a subset of A029707. The other twin primes are A061368. - Gus Wiseman, Dec 11 2024

Crossrefs

A subset of A029707 (lesser index of twin primes).
Prime index of each (prime) term of A061351.
Positions of zeros in A061399.
For perfect power instead of squarefree we have A377436, zeros of A377432.
Positions of zeros in A377784.
The rest of the twin primes are at A378620, indices of A061368.
A000040 lists the primes, differences A001223, (run-lengths A333254, A373821).
A005117 lists the squarefree numbers, differences A076259.
A006562 finds balanced primes.
A013929 lists the nonsquarefree numbers, differences A078147.
A014574 is the intersection of A006093 and A008864.
A038664 locates the first prime gap of size 2n.
A046933 counts composite numbers between primes.
A061398 counts squarefree numbers between primes, zeros A068360.
A120327 gives the least nonsquarefree number >= n.

Programs

  • Mathematica
    Select[Range[100],And@@SquareFreeQ/@Range[Prime[#],Prime[#+1]]&] (* Gus Wiseman, Dec 11 2024 *)
  • PARI
    isok(n) = for (k=prime(n)+1, prime(n+1)-1, if (!issquarefree(k), return (0))); 1; \\ Michel Marcus, Apr 29 2016

Formula

n such that A061398(n) = prime(n+1)-prime(n)-1.
prime(a(n)) = A061351(n). - Gus Wiseman, Dec 11 2024

A377436 Numbers k such that there is no perfect-power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			Primes 8 and 9 are 19 and 23, and the interval (20,21,22) contains no prime-powers, so 8 is in the sequence.
		

Crossrefs

For powers of 2 instead of primes see A377467, A013597, A014210, A014234, A244508.
For squarefree instead of perfect-power we have A068360, see A061398, A377430, A377431.
For just squares (instead of all perfect-powers) we have A221056, primes A224363.
For prime-powers (instead of perfect-powers) we have A377286.
These are the positions of 0 in A377432.
For one instead of none we have A377434, for prime-powers A377287.
For two instead of none we have A377466, for prime-powers A377288, primes A053706.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A046933 counts the interval from A008864(n) to A006093(n+1).
A065514 gives the nearest prime-power before prime(n)-1, difference A377289.
A080101 and A366833 count prime-powers between primes, see A377057, A053607, A304521.
A081676 gives the nearest perfect-power up to n.
A246655 lists the prime-powers not including 1, complement A361102.
A377468 gives the nearest perfect-power after n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[100],Length[Select[Range[Prime[#]+1, Prime[#+1]-1],perpowQ]]==0&]

A052147 a(n) = prime(n) + 2.

Original entry on oeis.org

4, 5, 7, 9, 13, 15, 19, 21, 25, 31, 33, 39, 43, 45, 49, 55, 61, 63, 69, 73, 75, 81, 85, 91, 99, 103, 105, 109, 111, 115, 129, 133, 139, 141, 151, 153, 159, 165, 169, 175, 181, 183, 193, 195, 199, 201, 213, 225, 229, 231, 235, 241, 243, 253, 259
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk), Jan 24 2000

Keywords

Comments

A048974, A052147, A067187 and A088685 are very similar after dropping terms less than 13. - Eric W. Weisstein, Oct 10 2003
A117530(n,2) = a(n) for n>1. - Reinhard Zumkeller, Mar 26 2006
a(n) = A000040(n) + 2 = A008864(n) + 1 = A113395(n) - 1 = A175221(n) - 2 = A175222(n) - 3 = A139049(n) - 4 = A175223(n) - 5 = A175224(n) - 6 = A140353(n) - 7 = A175225(n) - 8. - Jaroslav Krizek, Mar 06 2010
Left edge of the triangle in A065342. - Reinhard Zumkeller, Jan 30 2012
Union of A006512 and A107986. - David James Sycamore, Jul 08 2018

Crossrefs

A139690 is a subsequence.

Programs

Previous Showing 11-20 of 199 results. Next