cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A186646 Every fourth term of the sequence of natural numbers 1,2,3,4,... is halved.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 4, 9, 10, 11, 6, 13, 14, 15, 8, 17, 18, 19, 10, 21, 22, 23, 12, 25, 26, 27, 14, 29, 30, 31, 16, 33, 34, 35, 18, 37, 38, 39, 20, 41, 42, 43, 22, 45, 46, 47, 24, 49, 50, 51, 26, 53, 54, 55, 28, 57, 58, 59, 30, 61, 62, 63, 32, 65, 66, 67, 34, 69, 70, 71, 36, 73, 74, 75, 38, 77, 78, 79, 40, 81, 82, 83, 42, 85, 86, 87, 44, 89, 90, 91, 46, 93, 94, 95, 48, 97, 98, 99
Offset: 1

Views

Author

R. J. Mathar, Feb 25 2011

Keywords

Comments

a(n) is the length of the period of the sequence k^2 mod n, k=1,2,3,4,..., i.e., the length of the period of A000035 (n=2), A011655 (n=3), A000035 (n=4), A070430 (n=5), A070431 (n=6), A053879 (n=7), A070432 (n=8), A070433 (n=9), A008959 (n=10), A070434 (n=11), A070435 (n=12) etc.
From Franklin T. Adams-Watters, Feb 24 2011: (Start)
Clearly if gcd(n,m) = 1, a(nm) = lcm(a(n),a(m)), so it suffices to establish this for prime powers.
If p is a prime, the period must divide p, but k^2 mod p is not constant, so a(p) = p.
a(p^e), e > 1, must be divisible by a(p^(e-1)), and must divide p^e. If p != 2, (p^(e-1)+1)^2 = p^(2e-2)+2p^(e-1)+1 == 2p^(e-1)+1 (mod p^2), so a(p^e) != p^(e-1); it must then be e.
By inspection, a(4) = 2 and a(8) = 4.
This leaves a(2^e), e > 3. But then (2^(e-2)+1)^2 = 2^(2e-4)+2^(e-1)+1 == 2^(e-1)+1 (mod 2^e), so a(n) > 2^(e-2). On the other hand, (2^(e-1)+c)^2 = 2^(2e-2)+c2^e+c^2 == c^2 (mod 2^e). Hence the period is 2^(e-1). (End)

Crossrefs

Cf. A000224 (size of the set of moduli of k^2 mod n), A019554, A060819, A061037, A090129, A142705, A164115, A283971.

Programs

  • Maple
    A186646 := proc(n) if n mod 4 = 0 then n/2 ; else n ; end if; end proc ;
  • Mathematica
    Flatten[Table[{n,n+1,n+2,(n+3)/2},{n,1,101,4}]] (* or *) LinearRecurrence[ {0,0,0,2,0,0,0,-1},{1,2,3,2,5,6,7,4},100] (* Harvey P. Dale, May 30 2014 *)
    Table[n (7 - (-1)^n - 2 Cos[n Pi/2])/8, {n, 100}] (* Federico Provvedi , Jan 02 2018 *)
  • PARI
    a(n)=if(n%4,n,n/2) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    def A186646(n): return n if n&3 else n>>1 # Chai Wah Wu, Jan 10 2023

Formula

a(n) = 2*a(n-4) - a(n-8).
a(4n) = 2n; a(4n+1) = 4n+1; a(4n+2) = 4n+2; a(4n+3) = 4n+3.
a(n) = n/A164115(n).
G.f.: x*(1 + 2*x + 3*x^2 + 2*x^3 + 3*x^4 + 2*x^5 + x^6) / ( (x-1)^2*(1+x)^2*(x^2+1)^2 ).
Dirichlet g.f.: (1-2/4^s)*zeta(s-1).
A019554(n) | a(n). - Charles R Greathouse IV, Feb 24 2011
a(n) = n*(7 - (-1)^n - (-i)^n - i^n)/8, with i=sqrt(-1). - Bruno Berselli, Feb 25 2011
Multiplicative with a(p^e)=2^e if p=2 and e<=1; a(p^e)=2^(e-1) if p=2 and e>=2; a(p^e)=p^e otherwise. - David W. Wilson, Feb 26 2011
a(n) * A060819(n+2) = A142705(n+1) = A061037(2n+2). - Paul Curtz, Mar 02 2011
a(n) = n - (n/2)*floor(((n-1) mod 4)/3). - Gary Detlefs, Apr 14 2013
a(2^n) = A090129(n+1). - R. J. Mathar, Oct 09 2014
a(n) = n*(7 - (-1)^n - 2*cos(n*Pi/2))/8. - Federico Provvedi, Jan 02 2018
E.g.f.: (1/4)*x*(4*cosh(x) + sin(x) + 3*sinh(x)). - Stefano Spezia, Jan 26 2020
Sum_{k=1..n} a(k) ~ (7/16) * n^2. - Amiram Eldar, Nov 28 2022

A174452 a(n) = n^2 mod 1000.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 24, 89, 156, 225, 296, 369, 444, 521, 600, 681, 764, 849, 936, 25, 116, 209, 304, 401, 500, 601, 704, 809, 916, 25
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 21 2010

Keywords

Comments

a(n) = A000290(n) for n < 32, but a(32) = 24;
A008959(n) = a(n) mod 10; A002015(n) = a(n) mod 100;
periodic with period 500: a(n+500)=a(n) and a(250*n+k)=a(250*n-k) for k <= 250*n;
a(n) = (n mod 1000)^2 mod 1000;
a(m*n) = a(m)*a(n) mod 1000;
A122986 gives the range of this sequence;
a(n) = n for n = 0, 1, and 376.

Examples

			Some calculations for n=982451653, to be realized by hand:
a(n) = (53^2 + 200*6*3) mod 1000 = 6409 mod 1000 = 409;
a(n) = (653^2) mod 1000 = 426409 mod 1000 = 409;
a(n) = a(n mod 500) = a(153) = 409;
a(n) = 965211250482432409 mod 1000 = 409.
		

Crossrefs

Programs

Formula

a(n) = ((n mod 100)^2 + 200 * (floor(n/100) mod 10) * (n mod 10)) mod 1000.

A002015 a(n) = n^2 reduced mod 100.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 21, 44, 69, 96, 25, 56, 89, 24, 61, 0, 41, 84, 29, 76, 25, 76, 29, 84, 41, 0, 61, 24, 89, 56, 25, 96, 69, 44, 21, 0, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81
Offset: 0

Views

Author

Keywords

Comments

Periodic with period 50: (0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 21, 44, 69, 96, 25, 56, 89, 24, 61, 0, 41, 84, 29, 76, 25, 76, 29, 84, 41, 0, 61, 24, 89, 56, 25, 96, 69, 44, 21, 0, 81, 64, 49, 36, 25, 16, 9, 4, 1) and next term is 0. The period is symmetrical about the "midpoint" 25. - Zak Seidov, Oct 26 2009
A010461 gives the range of this sequence. - Reinhard Zumkeller, Mar 21 2010

Crossrefs

Programs

Formula

From Reinhard Zumkeller, Mar 21 2010: (Start)
a(n) = (n mod 10) * ((n mod 10) + 20 * ((n\10) mod 10)) mod 100.
a(n) = A174452(n) mod 100; A008959(n) = a(n) mod 10;
a(m*n) = a(m)*a(n) mod 100;
a(n) = (n mod 100)^2 mod 100;
a(n) = n for n = 0, 1, and 25. (End)

Extensions

Definition rephrased at the suggestion of Zak Seidov, Oct 26 2009

A070514 Final digit of n^4: a(n) = n^4 mod 10.

Original entry on oeis.org

0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 13 2002

Keywords

Comments

Decimal expansion of 538853870/3333333333. - Alexander R. Povolotsky, Mar 09 2013

Crossrefs

Cf. A010879, A008959, A008960. - Doug Bell, Jun 15 2015

Programs

Formula

a(n) = n^k mod 10; for k > 0 where k mod 4 = 0. - Doug Bell, Jun 15 2015
From G. C. Greubel, Apr 01 2016: (Start)
a(n) = a(n-10).
a(2*n) = 6*A011558(n).
G.f.: (x +6*x^2 +x^3 +6*x^4 +5*x^5 +6*x^6 +x^7 +6*x^8 +x^9)/(1 - x^10). (End)

A033569 a(n) = (2*n - 1)*(3*n + 1).

Original entry on oeis.org

-1, 4, 21, 50, 91, 144, 209, 286, 375, 476, 589, 714, 851, 1000, 1161, 1334, 1519, 1716, 1925, 2146, 2379, 2624, 2881, 3150, 3431, 3724, 4029, 4346, 4675, 5016, 5369, 5734, 6111, 6500, 6901, 7314, 7739, 8176, 8625, 9086, 9559, 10044, 10541, 11050, 11571
Offset: 0

Views

Author

Keywords

Comments

For n>0, a(n) is the sum of the numbers from 2n+2 to 4n. The last digit of a(n) corresponds to the last digit of the squares mod 10 (A008959). Binomial Transform of a(n) starts: -1, 3, 28, 124, 432, 1328, 3776, 10176, 26368, ... . - Wesley Ivan Hurt, Dec 06 2014

Crossrefs

Cf. A008959, A060747, A016777, A259758 (subsequence).

Programs

Formula

G.f.: (-1+7*x+6*x^2)/(1-x)^3. - Vincenzo Librandi, Jul 07 2012
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 07 2012
E.g.f.: (-1+5*x+6*x^2)*e^x. - Robert Israel, Dec 07 2014
a(n) = A060747(n) * A016777(n). - Reinhard Zumkeller, Jul 05 2015
Sum_{n>=0} 1/a(n) = 2/5*(log(2)-1) -sqrt(3)*Pi/30 -3*log(3)/10 = -0.6337047... - R. J. Mathar, Apr 22 2024

A325437 Final digit of primes of the form k^2 + 1.

Original entry on oeis.org

2, 5, 7, 7, 1, 7, 7, 1, 7, 7, 7, 1, 7, 7, 7, 7, 7, 1, 7, 1, 7, 1, 7, 7, 1, 7, 7, 1, 7, 1, 1, 7, 1, 7, 7, 7, 1, 7, 1, 7, 1, 1, 7, 1, 7, 1, 1, 7, 1, 7, 7, 7, 1, 1, 7, 7, 7, 1, 7, 1, 1, 7, 1, 7, 7, 7, 1, 7, 1, 7, 7, 7, 7, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1, 7, 1, 7
Offset: 1

Views

Author

Martin Renner, Apr 27 2019

Keywords

Comments

This sequence is presumably infinite. See 1st comment of A002496.
For k > 2, i.e., primes > 5 the final digit is always 1 or 7. Proof: Let k = 2*m - 1 odd. Then k^2 + 1 is divisible by 2, hence prime only for m = 1. Let k = 2*m even. Then k^2 + 1 = 4*m^2 + 1. The final digit of multiples of four is 4, 8, 2, 6, 0, 4, 8, 2, 6, 0, ... and of squares 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, ... (cf. A008959), hence the last digit of the product 4*m^2 is 4, 6, 6, 4, 0, ... or of the sum 4*m^2 + 1 is 5, 7, 7, 5, 1, ... (cf. A053755) and therefore for primes > 5 the final digit is 1 or 7.
Accordingly, for large k approximately one-third of the primes of the form k^2 + 1 end in 1, two-thirds end in 7.

Crossrefs

Programs

  • Maple
    seq(k mod 10,k=select(isprime,[2,seq(4*i^2+1,i=1..10000)]));
  • Mathematica
    Mod[#,10]&/@Select[Range[1000]^2+1,PrimeQ] (* Harvey P. Dale, Jul 05 2023 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, if (issquare(p-1), print1(p % 10, ", ")););} \\ Michel Marcus, May 07 2019

Formula

a(n) = A002496(n) mod 10.

A114448 Array a(n,k) = n^k (mod k) read by antidiagonals (k>=1, n>=1).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 0, 0, 2, 0, 3, 4, 1, 0, 1, 0, 1, 4, 3, 2, 1, 0, 0, 1, 0, 0, 4, 3, 0, 1, 0, 1, 2, 1, 1, 1, 4, 1, 8, 1, 0, 0, 0, 0, 2, 0, 5, 0, 0, 4, 1, 0, 1, 1, 1, 3, 1, 6, 1, 1, 9, 2, 1, 0, 0, 2, 0, 4, 4, 0, 0, 8, 6, 3, 4, 1, 0, 1, 0, 1, 0, 3, 1, 1, 0, 5, 4, 9, 2, 1
Offset: 1

Views

Author

Leroy Quet, Feb 14 2006

Keywords

Comments

Alternate description: triangular array a(n, k) = n^k (mod k) read by rows (n > 1, 0 < k < n). This is equivalent because a(n, k) = a(n-k, k). - David Wasserman, Jan 25 2007

Examples

			2^6 = 64 and 64 (mod 6) is 4. So a(2,6) = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := Mod[n^k, k]; Table[a[n - k + 1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 12 2012 *)

Extensions

More terms from David Wasserman, Jan 25 2007

A210251 Residues modulo 100 of odd squares.

Original entry on oeis.org

1, 9, 21, 25, 29, 41, 49, 61, 69, 81, 89
Offset: 1

Views

Author

M. F. Hasler, Mar 19 2012

Keywords

Crossrefs

Range of A016754. Odd terms from A010461. See also A002015, A008959, A174452.
Also the range of A030156 and A192775 without initial term.

Programs

  • Mathematica
    Mod[#,100]&/@(Range[1,55,2]^2)//Union (* Harvey P. Dale, Jul 27 2017 *)
  • PARI
    vecsort(vector(12,n,(2*n-1)^2)%100,,8)

Formula

{1,9} + {0,1,2,3,4}*20 union {25}.

A191759 Least significant decimal digit of (2n-1)^2.

Original entry on oeis.org

1, 9, 5, 9, 1, 1, 9, 5, 9, 1, 1, 9, 5, 9, 1, 1, 9, 5, 9, 1, 1, 9, 5, 9, 1, 1, 9, 5, 9, 1, 1, 9, 5, 9, 1, 1, 9, 5, 9, 1, 1, 9, 5, 9, 1, 1, 9, 5, 9, 1, 1, 9, 5, 9, 1, 1, 9, 5, 9, 1, 1, 9, 5, 9, 1, 1, 9, 5, 9, 1, 1, 9, 5, 9, 1, 1, 9, 5, 9, 1, 1, 9, 5, 9, 1, 1, 9
Offset: 1

Views

Author

Ant King, Jun 15 2011

Keywords

Comments

Bisection of A008959.
This sequence is periodic with repeating part <1,9,5,9,1> of length five. Hence, as the members of each cycle sum to 25, the terms satisfy the fifth-order homogeneous recurrence a(n) = a(n-5) and the fourth-order inhomogeneous recurrence a(n) = 25 - a(n-1) - a(n-2) - a(n-3) - a(n-4).

Examples

			The fifth odd square number is 81 which has least significant digit 1. Hence a(5)=1.
		

Crossrefs

Cf. A016754 (odd squares).

Programs

  • Mathematica
    Mod[(2#-1)^2,10]&/@Range[50]
    LinearRecurrence[{0, 0, 0, 0, 1},{1, 9, 5, 9, 1},87] (* Ray Chandler, Aug 25 2015 *)
    PadRight[{},120,{1,9,5,9,1}] (* Harvey P. Dale, Aug 04 2019 *)
  • PARI
    a(n)=[1,9,5,9,1][n%5+1] \\ Charles R Greathouse IV, Jun 15 2011

Formula

a(n) = (2n-1)^2 mod 10.
G.f.: x*(1+9*x+5*x^2+9*x^3+x^4)/(1-x^5) (note that the coefficients of x in the numerator are precisely the terms that constitute the periodic cycle of the sequence).
a(n) = 5 + 4*A080891(n+2). - R. J. Mathar, Jun 16 2011
Continued fraction of (97+17*sqrt(3077))/938. - R. J. Mathar, Jun 25 2011
a(n) = (-n^2 + n + 1) mod 10. - Arkadiusz Wesolowski, Jul 03 2012

Extensions

More terms from Arkadiusz Wesolowski, Jul 03 2012
Previous Showing 11-19 of 19 results.