cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 70 results. Next

A154201 Decimal expansion of log_8 (12).

Original entry on oeis.org

1, 1, 9, 4, 9, 8, 7, 5, 0, 0, 2, 4, 0, 3, 8, 5, 3, 9, 3, 8, 1, 7, 9, 1, 2, 9, 8, 1, 3, 1, 5, 9, 3, 8, 8, 3, 6, 2, 5, 3, 2, 7, 1, 4, 6, 9, 2, 3, 0, 8, 2, 7, 0, 2, 0, 1, 5, 1, 9, 1, 7, 5, 5, 1, 5, 1, 3, 6, 9, 9, 4, 0, 9, 2, 6, 4, 7, 8, 6, 1, 8, 7, 5, 0, 7, 4, 2, 6, 8, 2, 4, 9, 7, 2, 6, 9, 6, 0, 8
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			1.1949875002403853938179129813159388362532714692308270201519...
		

Crossrefs

Cf. decimal expansion of log_8(m): A152956 (m=3), A153204 (m=5), A153493 (m=6), A153618 (m=7), A154010 (m=9), A154159 (m=10), A154180 (m=11), this sequence, A154309 (m=13), A154468 (m=14), A154574 (m=15), A154858 (m=17), A154927 (m=18), A155060 (m=19), A155502 (m=20), A155675 (m=21), A155741 (m=22), A155827 (m=23), A155975 (m=24).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(12)/Log(8); // G. C. Greubel, Aug 31 2018
  • Mathematica
    RealDigits[Log[8,12],10,120][[1]] (* Harvey P. Dale, Oct 17 2011 *)
  • PARI
    default(realprecision, 100); log(12)/log(8) \\ G. C. Greubel, Aug 31 2018
    

Formula

Equals A010701 + A153493. - R. J. Mathar, Jan 07 2021

A132355 Numbers of the form 9*h^2 + 2*h, for h an integer.

Original entry on oeis.org

0, 7, 11, 32, 40, 75, 87, 136, 152, 215, 235, 312, 336, 427, 455, 560, 592, 711, 747, 880, 920, 1067, 1111, 1272, 1320, 1495, 1547, 1736, 1792, 1995, 2055, 2272, 2336, 2567, 2635, 2880, 2952, 3211, 3287, 3560, 3640, 3927, 4011, 4312, 4400, 4715, 4807
Offset: 1

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

X values of solutions to the equation 9*X^3 + X^2 = Y^2.
The set of all m such that 9*m + 1 is a perfect square. - Gary Detlefs, Feb 22 2010
The concatenation of any term with 11..11 (1 repeated an even number of times, see A099814) belongs to the list. Example: 87 is a term, so also 8711, 871111, 87111111, 871111111111, ... are terms of this sequence. - Bruno Berselli, May 15 2017

Crossrefs

A205808 is the characteristic function.
Numbers of the form 9*n^2+k*n, for integer n: A016766 (k=0), this sequence (k=2), A185039 (k=4), A057780 (k=6), A218864 (k=8). - Jason Kimberley, Nov 09 2012
For similar sequences of numbers m such that 9*m+k is a square, see list in A266956.

Programs

Formula

a(2*k) = k*(9*k-2), a(2*k+1) = k*(9*k+2).
a(n) = n^2 - n + 5*floor(n/2)^2. - Gary Detlefs, Feb 23 2010
From R. J. Mathar, Mar 17 2010: (Start)
a(n) = +a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
G.f.: x^2*(7 + 4*x + 7*x^2)/((1 + x)^2*(1 - x)^3). (End)
a(n) = (2*n - 1 + (-1)^n)*(9*(2*n - 1) + (-1)^n)/16. - Luce ETIENNE, Sep 13 2014
Sum_{n>=2} 1/a(n) = 9/4 - cot(2*Pi/9)*Pi/2. - Amiram Eldar, Mar 15 2022

Extensions

Simpler definition and minor edits from N. J. A. Sloane, Feb 03 2012
Since this is a list, offset changed to 1 and formulas translated by Jason Kimberley, Nov 18 2012

A164346 a(n) = 3 * 4^n.

Original entry on oeis.org

3, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888, 51539607552, 206158430208, 824633720832, 3298534883328, 13194139533312, 52776558133248, 211106232532992, 844424930131968
Offset: 0

Views

Author

Klaus Brockhaus, Aug 13 2009

Keywords

Comments

Binomial transform of A000244 without initial 1.
Second binomial transform of A007283.
Third binomial transform of A010701.
Inverse binomial transform of A005053 without initial 1.
First differences of A024036. - Omar E. Pol, Feb 16 2013

Crossrefs

Cf. A000302 (powers of 4), A000244 (powers of 3), A007283 (3*2^n), A010701 (all 3's), A005053, A002001, A096045, A140660 (3*4^n+1), A002023 (6*4^n), A002063(9*4^n), A056120, A084509.

Programs

Formula

a(n) = 4*a(n-1) for n > 1; a(0) = 3.
G.f.: 3/(1-4*x).
a(n) = A002001(n+1). a(n) = A096045(n)+2. a(n) = A140660(n)-1.
a(n) = A002023(n)/2. a(n) = A002063(n)/3. a(n) = A056120(n+3)/9.
Apparently a(n) = A084509(n+3)/2.
a(n) = A110594(n+1), n>1. - R. J. Mathar, Aug 17 2009
a(n) = 3*A000302(n). - Omar E. Pol, Feb 18 2013
a(n) = A000079(2*n) + A000079(2*n+1). - M. F. Hasler, Jul 28 2015
E.g.f.: 3*exp(4*x). - G. C. Greubel, Sep 15 2017

A110591 Number of digits in base-4 representation of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Jonathan Vos Post, Jul 29 2005

Keywords

Comments

Number of digits in A007090(n).
In terms of the repetition convolution operator #, where (sequence A) # (sequence B) = the sequence consisting of A(n) copies of B(n), this sequence is the repetition convolution A110594 # n. Over the set of positive infinite integer sequences, # gives a nonassociative noncommutative groupoid (magma) with a left identity (A000012) but no right identity, where the left identity is also a right nullifier and idempotent. For any positive integer constant c, the sequence c*A000012 = (c,c,c,c,...) is also a right nullifier; for c = 1, this is A000012; for c = 3 this is A010701.

Crossrefs

Programs

  • Haskell
    import Data.List (unfoldr)
    a110591 0 = 1
    a110591 n = length $
       unfoldr (\x -> if x == 0 then Nothing else Just (x, x `div` 4)) n
    -- Reinhard Zumkeller, Apr 22 2011
  • Maple
    A110592 := proc(n)
        if n = 0 then
            1;
        else
            1+floor(log[4](n)) ;
        end if;
    end proc:
    seq(A110592(n),n=0..50) ; # R. J. Mathar, Sep 02 2020
  • Mathematica
    a[n_] := If[n == 0, 1, Floor[Log[4, n]] + 1];
    a /@ Range[0, 100] (* Jean-François Alcover, Nov 24 2020 *)

Formula

G.f.: 1 + (1/(1 - x))*Sum_{k>=0} x^(4^k). - Ilya Gutkovskiy, Jan 08 2017
a(n) = floor(log_4(n)) + 1 for n >= 1. - Petros Hadjicostas, Dec 12 2019

A269551 Expansion of (3*x^2 + 258*x - 5)/(x^3 - 99*x^2 + 99*x - 1).

Original entry on oeis.org

5, 237, 22965, 2250077, 220484325, 21605213517, 2117090440085, 207453257914557, 20328302185186245, 1991966160890337197, 195192355465067858805, 19126858869415759825437, 1874236976847279395033765, 183656096872163964953483277, 17996423256495221286046327125, 1763465823039659522067586574717
Offset: 0

Views

Author

Michel Marcus, Feb 29 2016

Keywords

Comments

Mc Laughlin (2010) gives an identity relating ten sequences, denoted a_k, b_k, ..., f_k, p_k, q_k, r_k, s_k. This is the sequence e_k.

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((3*x^2+258*x-5)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 01 2016
  • Mathematica
    CoefficientList[Series[(3 x^2 + 258 x - 5)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[FullSimplify[8/3 + (-(3 Sqrt[6] - 7)/(2 Sqrt[6] + 5)^(2 n) + (3 Sqrt[6] + 7) (2 Sqrt[6] + 5)^(2 n))/6], {n, 0, 20}] (* Bruno Berselli, Mar 01 2016 *)
  • PARI
    Vec((3*x^2 + 258*x - 5)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
    
  • Sage
    gf = (3*x^2+258*x-5)/(x^3-99*x^2+99*x-1)
    print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 01 2016
    

Formula

G.f.: (3*x^2 + 258*x - 5)/(x^3 - 99*x^2 + 99*x - 1).
a(n) = 8/3 + (-(3*sqrt(6) - 7)/(2*sqrt(6) + 5)^(2*n) + (3*sqrt(6) + 7)*(2*sqrt(6) + 5)^(2*n))/6. - Bruno Berselli, Mar 01 2016

A110592 Number of digits in base-5 representation of n. String length of A007091.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Jonathan Vos Post, Jul 29 2005

Keywords

Comments

In terms of the repetition convolution operator #, where (sequence A) # (sequence B) = the sequence consisting of A(n) copies of B(n), then this sequence is the repetition convolution A110595 # n. Over the set of positive infinite integer sequences, # gives a nonassociative noncommutative groupoid (magma) with a left identity (A000012) but no right identity, where the left identity is also a right nullifier and idempotent. For any positive integer constant c, the sequence c*A000012 = (c,c,c,c,...) is also a right nullifier; for c = 1, this is A000012; for c = 3 this is A010701.

Crossrefs

Programs

  • Mathematica
    Join[{1},IntegerLength[Range[110],5]] (* Harvey P. Dale, Aug 03 2016 *)

Formula

G.f.: 1 + (1/(1 - x))*Sum_{k>=0} x^(5^k). - Ilya Gutkovskiy, Jan 08 2017
a(n) = floor(log_5(n)) + 1 for n >= 1. - Petros Hadjicostas, Dec 12 2019

A169609 Period 3: repeat [1, 3, 3].

Original entry on oeis.org

1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3
Offset: 0

Views

Author

Klaus Brockhaus, Dec 03 2009

Keywords

Comments

Interleaving of A000012, A010701 and A010701.
Also continued fraction expansion of (5+sqrt(65))/10 = 1.3062257748....
Also decimal expansion of 133/999.
a(n) = A144437(n) for n > 0.
Unsigned version of A154595.
Binomial transform of A168615.
Inverse binomial transform of A168673.
Essentially first differences of A047347.

Crossrefs

Cf. A000012 (all 1's sequence), A010701 (all 3's sequence), A144437 (repeat 3, 3, 1), A154595 (repeat 1, 3, 3, -1, -3, -3), A168615, A168673, A047347 (congruent to {0, 1, 4} mod 7), A010684 (repeat 1, 3).
Cf. A171419 (decimal expansion of (5+sqrt(65))/10).
Cf. A146094.

Programs

  • Magma
    [ n mod 3 eq 0 select 1 else 3: n in [0..104] ];
    
  • Magma
    &cat [[1, 3, 3]^^30]; // Wesley Ivan Hurt, Jul 02 2016
  • Maple
    seq(op([1, 3, 3]), n=0..50); # Wesley Ivan Hurt, Jul 02 2016
  • Mathematica
    PadRight[{},120,{1,3,3}] (* or *) LinearRecurrence[{0,0,1},{1,3,3},120] (* Harvey P. Dale, Apr 29 2015 *)

Formula

a(n) = a(n-3) for n > 2, with a(0) = 1, a(1) = 3, a(2) = 3.
G.f.: (1+3*x+3*x^2)/(1-x^3).
a(n) = (7/3)+(2/3)*cos((2*Pi/3)*(n+1))-(2*sqrt(3)/3)*sin((2*Pi/3)*(n+1)). [Richard Choulet, Mar 15 2010]
a(n) = a(n-a(n-2)) for n>=2. Example: a(5) = a(5-a(3)) = a(5-a(3-a(1))) = a(5-a(3-3)) = a(5-a(0)) = a(5-1) = a(4) = a(4-a(2)) = a(4-3) = a(1) = 3. [Richard Choulet, Mar 15 2010; edited by Klaus Brockhaus, Nov 21 2010]
a(n) = 1 + 2*sgn(n mod 3). - Wesley Ivan Hurt, Jul 02 2016
a(n) = 3/gcd(n,3). - Wesley Ivan Hurt, Jul 11 2016

Extensions

Keywords cofr, cons added by Klaus Brockhaus, Apr 20 2010
Minor edits, crossref added by Klaus Brockhaus, May 03 2010

A261004 Expansion of (-3-164*x-x^2)/(1-99*x+99*x^2-x^3).

Original entry on oeis.org

-3, -461, -45343, -4443321, -435400283, -42664784581, -4180713488823, -409667257120241, -40143210484294963, -3933624960203786301, -385455102889486762703, -37770666458209498958761, -3701139857801641411196043, -362673935398102648798253621, -35538344529156257940817658983
Offset: 0

Views

Author

N. J. A. Sloane, Aug 12 2015

Keywords

Comments

Mc Laughlin (2010) gives an identity relating ten sequences, denoted a_k, b_k, ..., f_k, p_k, q_k, r_k, s_k. This is the sequence a_k.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{99,-99,1},{-3,-461,-45343},30] (* Harvey P. Dale, Dec 02 2017 *)
  • PARI
    Vec((-3-164*x-x^2)/(1-99*x+99*x^2-x^3) + O(x^20)) \\ Michel Marcus, Feb 29 2016

A269548 Expansion of (-7*x^2 + 134*x + 1)/(x^3 - 99*x^2 + 99*x - 1).

Original entry on oeis.org

-1, -233, -22961, -2250073, -220484321, -21605213513, -2117090440081, -207453257914553, -20328302185186241, -1991966160890337193, -195192355465067858801, -19126858869415759825433, -1874236976847279395033761, -183656096872163964953483273, -17996423256495221286046327121
Offset: 0

Views

Author

Michel Marcus, Feb 29 2016

Keywords

Comments

Mc Laughlin (2010) gives an identity relating ten sequences, denoted a_k, b_k, ..., f_k, p_k, q_k, r_k, s_k. This is the sequence b_k.

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((-7*x^2+134*x+1)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 01 2016
  • Mathematica
    CoefficientList[Series[(-7 x^2 + 134 x + 1)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[FullSimplify[4/3 + ((3 Sqrt[6] - 7)/(2 Sqrt[6] + 5)^(2 n) - (3 Sqrt[6] + 7) (2 Sqrt[6] + 5)^(2 n))/6], {n, 0, 20}] (* Bruno Berselli, Mar 01 2016 *)
  • PARI
    Vec((-7*x^2 + 134*x + 1)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
    
  • Sage
    gf = (-7*x^2+134*x+1)/(x^3-99*x^2+99*x-1)
    print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 01 2016
    

Formula

G.f.: (-7*x^2 + 134*x + 1)/(x^3 - 99*x^2 + 99*x - 1).
a(n) = 4/3 + ((3*sqrt(6) - 7)/(2*sqrt(6) + 5)^(2*n) - (3*sqrt(6) + 7)*(2*sqrt(6) + 5)^(2*n))/6. - Bruno Berselli, Mar 01 2016

A269549 Expansion of (-x^2 + 298*x - 1)/(x^3 - 99*x^2 + 99*x - 1).

Original entry on oeis.org

1, -199, -19799, -1940399, -190139599, -18631740599, -1825720439399, -178901971320799, -17530567468999199, -1717816709990600999, -168328507011609898999, -16494475870427779501199, -1616290306794910781218799, -158379955590030828779941399, -15519619357516226309653038599
Offset: 0

Views

Author

Michel Marcus, Feb 29 2016

Keywords

Comments

Mc Laughlin (2010) gives an identity relating ten sequences, denoted a_k, b_k, ..., f_k, p_k, q_k, r_k, s_k. This is the sequence c_k.

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((-x^2+298*x-1)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 01 2016
  • Mathematica
    CoefficientList[Series[(-x^2 + 298 x - 1)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[FullSimplify[37/12 + ((2 Sqrt[6] - 5)/(2 Sqrt[6] + 5)^(2 n) - (2 Sqrt[6] + 5) (2 Sqrt[6] + 5)^(2 n)) 5/24], {n, 0, 20}] (* Bruno Berselli, Mar 01 2016 *)
  • PARI
    Vec((-x^2 + 298*x - 1)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
    
  • Sage
    gf = (-x^2+298*x-1)/(x^3-99*x^2+99*x-1)
    print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 01 2016
    

Formula

G.f.: (-x^2 + 298*x - 1)/(x^3 - 99*x^2 + 99*x - 1).
a(n) = 37/12 + ((2*sqrt(6) - 5)/(2*sqrt(6) + 5)^(2*n) - (2*sqrt(6) + 5)*(2*sqrt(6) + 5)^(2*n))*5/24. - Bruno Berselli, Mar 01 2016
Previous Showing 11-20 of 70 results. Next