cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A060545 a(n) = binomial(n^2, n)/n.

Original entry on oeis.org

1, 3, 28, 455, 10626, 324632, 12271512, 553270671, 28987537150, 1731030945644, 116068178638776, 8634941152058949, 705873715441872264, 62895036884524942320, 6067037854078498539696, 629921975126394617164575, 70043473196734767582082230
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Crossrefs

Programs

Formula

a(n) = A060543(n, n) = A014062(n)/n.
a(n+1) = C(A005563(n), n) for n >= 0. - Fred Daniel Kline, Sep 27 2016
From Peter Bala, Oct 22 2023: (Start)
a(p^r) == 1 (mod p^(3+r)) for all positive integers r and all primes p >= 5 (apply Meštrović, Remark 17, p. 12).
Conjecture: a(2*p^r) == 4*p^r - 1 (mod p^(3+r)) for all positive integers r and all primes p >= 5. (End)

Extensions

More terms from Fred Daniel Kline, Sep 28 2016

A081370 Numbers k such that binomial(k^2, k) reduced mod k^2 is 0.

Original entry on oeis.org

1, 30, 105, 120, 132, 231, 252, 380, 495, 520, 595, 616, 630, 680, 756, 858, 870, 924, 1040, 1155, 1173, 1365, 1428, 1463, 1547, 1610, 1722, 1768, 1820, 1953, 1976, 1995, 2002, 2016, 2080, 2093, 2170, 2184, 2277, 2310, 2508, 2520, 2530, 2552, 2618, 2622
Offset: 1

Views

Author

Labos Elemer, Mar 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Do[s=Mod[Binomial[n^2, n], n^2]; If[s==0, Print[n]], {n, 1, 10000}]
    Select[Range[3000],Mod[Binomial[#^2,#],#^2]==0&] (* Harvey P. Dale, Aug 26 2025 *)
  • PARI
    is(k) = binomod(k^2, k, k^2) == 0; \\ Amiram Eldar, Jul 30 2024, using Max Alekseyev's binomod.gp

A091144 a(n) = binomial(n^2, n)/(1+(n-1)*n).

Original entry on oeis.org

1, 1, 2, 12, 140, 2530, 62832, 1997688, 77652024, 3573805950, 190223180840, 11502251937176, 779092434772236, 58448142042957576, 4811642166029230560, 431306008583779517040, 41820546066482630185200
Offset: 0

Views

Author

Paul Barry, Dec 22 2003

Keywords

Comments

Diagonal of array T(n,k) = binomial(kn,n)/(1+(k-1)n).
Number of paths up and left from (0,0) to (n^2-n,n) where x/y <= n-1 for all intermediate points. - Henry Bottomley, Dec 25 2003
Empirical: In the ring of symmetric functions over the fraction field Q(q, t), letting s(1^n) denote the Schur function indexed by (1^n), a(n) is equal to the coefficient of s(n) in nabla^(n)s(1^n) with q=t=1, where nabla denotes the "nabla operator" on symmetric functions, and s(n) denotes the Schur function indexed by the integer partition (n) of n. - John M. Campbell, Apr 06 2018

Crossrefs

Programs

  • GAP
    List([0..20],n->Binomial(n^2,n)/(1+(n-1)*n)); # Muniru A Asiru, Apr 08 2018
  • Magma
    [Binomial(n^2, n)/(1+(n-1)*n): n in [0..20]]; // Vincenzo Librandi, Apr 07 2018
    
  • Maple
    A091144 := proc(n)
        binomial(n^2,n)/(1+n*(n-1)) ;
    end proc: # R. J. Mathar, Feb 14 2015
  • Mathematica
    Table[Binomial[n^2, n] / (n (n - 1) + 1), {n, 0, 20}] (* Vincenzo Librandi, Apr 07 2018 *)
  • PARI
    a(n) = binomial(n^2, n)/(n*(n-1)+1); \\ Altug Alkan, Apr 06 2018
    

Formula

From Henry Bottomley, Dec 25 2003: (Start)
a(n) = A014062(n)/A002061(n);
a(n) = A062993(n-2, n);
a(n) = A070914(n, n-1);
a(n) = A071201(n, n^2-n);
a(n) = A071201(n, n^2-n+1);
a(n) = A071202(n, n^2-n+1). (End)

A107444 a(n) = C(n^3, n).

Original entry on oeis.org

1, 28, 2925, 635376, 234531275, 131513824548, 104200375748469, 110859231254749120, 152494520486567153895, 263409560461970212832400, 558225230412816157198777770, 1424174931670379304734465767920, 4305884331150027666756637066361970, 15224493238177464079881126301239927128
Offset: 1

Views

Author

Zak Seidov, May 26 2005

Keywords

Crossrefs

Cf. A014062 (C(n^2, n)), A359665.

Programs

  • Magma
    [Binomial(n^3, n): n in [1..30]]; // Vincenzo Librandi, Apr 22 2011
    
  • Mathematica
    Table[Binomial[n^3, n], {n, 12}]
  • PARI
    vector(100,n,binomial(n^3,n))

Formula

a(n) ~ exp(n) * n^(2*n - 1/2) / sqrt(2*Pi). - Vaclav Kotesovec, Jan 10 2023

A177456 a(n) = binomial(n^2,n+1)/n.

Original entry on oeis.org

2, 42, 1092, 35420, 1391280, 64425438, 3442573064, 208710267480, 14162980464360, 1063958304188780, 87677864005521636, 7865449972066576656, 763126447532235966816, 79629871834780293333510
Offset: 2

Views

Author

Michel Lagneau, May 09 2010

Keywords

Comments

n divides binomial(n^2,n+1).
Proof 1 :(n+1)*binomial(n^2,n+1) = n*(n-1)*binomial(n^2,n) => n divide binomial(n^2,n+1) because gcd(n,n+1) = 1.
Proof 2 : a(n) = binomial(n^2,n+1)/n = (n-1)*binomial(n^2-2,n-1)=> a(n) is an integer. - Michel Lagneau, May 13 2010

Examples

			For n=4, 1092 is in the sequence because binomial(16,5)/4 = 4368/4 = 1092.
		

Crossrefs

Programs

  • Magma
    [Binomial(n^2,n+1)/n: n in [2..30]]; // G. C. Greubel, Apr 29 2024
    
  • Maple
    with(numtheory):n0:=30:T:=array(1..n0-1):for n from 2 to n0 do:T[n-1]:= (binomial(n*n,n+1))/n:od:print(T):
  • Mathematica
    Table[Binomial[n^2,n+1]/n, {n,2,30}] (* G. C. Greubel, Apr 29 2024 *)
  • SageMath
    [binomial(n^2,n+1)/n for n in range(2,31)] # G. C. Greubel, Apr 29 2024

Formula

a(n) = binomial(n^2,n+1)/n.
From G. C. Greubel, Apr 29 2024: (Start)
a(n) = (n-1)*A177234(n).
a(n) = (n-1)*A177788(n)/n.
a(n) = n*(n-1)*A177784(n).
a(n) = A014062(n)/n. (End)

A096130 Triangle read by rows: T(n,k) = binomial(k*n,n), 1 <= k <= n.

Original entry on oeis.org

1, 1, 6, 1, 20, 84, 1, 70, 495, 1820, 1, 252, 3003, 15504, 53130, 1, 924, 18564, 134596, 593775, 1947792, 1, 3432, 116280, 1184040, 6724520, 26978328, 85900584, 1, 12870, 735471, 10518300, 76904685, 377348994, 1420494075, 4426165368, 1, 48620, 4686825, 94143280, 886163135, 5317936260, 23667689815, 85113005120, 260887834350
Offset: 1

Views

Author

Amarnath Murthy, Jul 04 2004

Keywords

Examples

			Triangle begins:
  1;
  1,   6;
  1,  20,   84;
  1,  70,  495,  1820;
  1, 252, 3003, 15504, 53130;
  ...
		

Crossrefs

Row-sums give A096131. The leading diagonal is A014062. Cf. A096131.
Cf. A007318.

Programs

  • GAP
    Flat(List([1..10],n->List([1..n],k->Binomial(k*n,n)))); # Muniru A Asiru, Aug 12 2018
  • Maple
    a:=(n,k)->binomial(k*n,n): seq(seq(a(n,k),k=1..n),n=1..10); # Muniru A Asiru, Aug 12 2018
  • PARI
    tabl(nrows) = {for (n=1, nrows, for (k=1, n, print1(binomial(k*n, n), ", ");); print(););} \\ Michel Marcus, May 14 2013
    

Formula

T(n, 1) = 1;
T(n, 2) = A000984(n) for n > 1;
T(n, 3) = A005809(n) for n > 2;
T(n, 4) = A005810(n) for n > 3;
T(n, n) = A014062(n).

Extensions

Corrected and extended by Reinhard Zumkeller, Jan 09 2005

A177788 a(n) = binomial(n^2, n+1)/(n-1).

Original entry on oeis.org

4, 63, 1456, 44275, 1669536, 75163011, 3934369216, 234799050915, 15736644960400, 1170354134607658, 95648578915114512, 8520904136405458044, 821828481957792579648, 85317719822978885714475, 9485883860726883646713600, 1124586875214241546178986915
Offset: 2

Views

Author

Michel Lagneau, May 13 2010

Keywords

Comments

The entries are integer for n >= 2 because binomial(n^2,n+1)/(n-1) = n*binomial(n^2-2,n-1), which is a product of two integers.

Crossrefs

Programs

  • Magma
    [Binomial(n^2,n+1)/(n-1): n in [2..30]]; // G. C. Greubel, Apr 28 2024
    
  • Maple
    n0:=30: T:=array(1..n0): T:=array(1..n0-1): for n from 2 to n0 do: T[n-1]:= (binomial(n^2,n+1))/(n-1): od: print(T):
  • Mathematica
    Table[Binomial[n^2,n+1]/(n-1), {n,2,40}] (* G. C. Greubel, Apr 28 2024 *)
  • PARI
    a(n) = binomial(n^2, n+1)/(n-1) \\ Charles R Greathouse IV, May 01 2024
  • SageMath
    [binomial(n^2,n+1)/(n-1) for n in range(2,31)] # G. C. Greubel, Apr 28 2024
    

Formula

a(n) = binomial(n^2,n+1)/(n-1).
a(n) = n * A177234(n).
a(n) = n^2 * A177784(n).

Extensions

Removed redundant second Maple version - R. J. Mathar, May 14 2010

A276449 Number of 1-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.

Original entry on oeis.org

1, 0, 0, 4, 6, 0, 0, 120, 190, 0, 0, 7140, 11480, 0, 0, 635376, 1028790, 0, 0, 75287520, 122391522, 0, 0, 11143364232, 18161699556, 0, 0, 1978369382080, 3230129794320, 0, 0, 409663695276000, 669741609663270, 0, 0, 96930293990660064, 158625578809472060
Offset: 1

Views

Author

Keywords

Comments

The old name was: Number of ways to choose n points from an n X n grid so that they have 90-degree rotational symmetry.
Consider a square n X n grid with n^2 squares. Each of the n^2 squares comes in two colors.
(E.g., an n X n chessboard with only two black fields, or a binary n X n matrix).
There are N(n) = binomial(n^2,n) = A014062(n) such 2-color grids. We are interested in configurations where n squares are colored in one way, say black, and the remaining ones stay white. Only colored grids modulo rotation around some axis perpendicular to the board through its center are of interest. These rotations represent the cyclic group C_4. Under C_4 operations R(90)^k, k=1..4, there will only be orbits of order 1 (colored grids invariant under R(90)^1, hence any rotation) order 2 (two different grids each not invariant under R(90)^1 but R(90)^2 operation, transforming into each other) and order 4 (four different grids each not invariant under R(90)^k for k=1,2,3, but under R(4)^4, transforming into each other). The orbit structure is denoted by 1^(e(n,1)) 2^(e(n,2)) 4^(e(n,4)) with e(n, 2^j) nonnegative integers for j=0,1,2. One has Sum_{j=0,1,2} 2^j*e(n,2^j) = N(n), and Sum_{j=0,1,2} e(n,2^j) which is the total number of orbits, given in A276454(n).
For example, one of the four 1-orbits of 4 X 4 board. (o) white, (+) black:
+ o o +
o o o o
o o o o
+ o o + ,
an example of a 2-orbit,
+ o + o o o o +
o o o o + o o o
o o o o o o o +
o + o + + o o o ,
an example of a 4-orbit,
+ + + + o o o + o o o o + o o o
o o o o o o o + o o o o + o o o
o o o o o o o + o o o o + o o o
o o o o o o o + + + + + + o o o .
The present sequence a(n) gives the number of 1-orbits of such 2-colored boards with n squares of one color under C_4.

Examples

			a(4) = 4, the arrangements are as follows:
   + o o +   o + o o   o o + o   o o o o
   o o o o   o o o +   + o o o   o + + o
   o o o o   + o o o   o o o +   o + + o
   + o o +   o o + o   o + o o   o o o o
a(5) = 6, the arrangements are as follows:
   + o o o +   o + o o o   o o + o o
   o o o o o   o o o o +   o o o o o
   o o + o o   o o + o o   + o + o +
   o o o o o   + o o o o   o o o o o
   + o o o +   o o o + o   o o + o o
   and
   o o o + o   o o o o o   o o o o o
   + o o o o   o + o + o   o O + o o
   O o + o o   o o + o o   o + + + o
   o o o o +   o + O + O   o o + o o
   o + o o o   o o o o o   o o o o o
reformatted - _Wolfdieter Lang_, Oct 02 2016
		

Crossrefs

Programs

  • Maple
    seq(op([binomial(2*i*(2*i+1),i),0,0,binomial(4*(i+1)^2,i+1)]),i=0..30); # Robert Israel, Sep 05 2016
  • Mathematica
    Table[If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4], {n, 37}] (* Michael De Vlieger, Sep 07 2016 *)
  • Python
    import math
    def nCr(n,r):
        f = math.factorial
        return f(n) / f(r) / f(n-r)
    # main program
    for j in range(101):
        if j%4 == 0:
            a = nCr((j*j/4),(j/4))
        elif j%4 == 1:
            a = nCr(((j-1)/2)*((j-1)/2+1),((j-1)/4))
        else:
            a = 0
        print(str(j)+" "+str(a))

Formula

a(n) = binomial((2*i)^2,i), for n = 4*i,
a(n) = binomial((2*i)*(2*i+1),i), for n = 4*i+1,
a(n) = 0, for others.

Extensions

Edited: New name. Old name as a comment. Text substantially changed. Wolfdieter Lang, Oct 02 2016

A276451 Number of 2-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.

Original entry on oeis.org

0, 1, 2, 12, 30, 408, 1012, 17920, 45600, 1059380, 2730756, 78115884, 203235032, 6917206576, 18113945256, 714851008512, 1881039165696, 84449819514060, 223049005408900, 11225502116862880, 29736777118603962, 1658138369930988088, 4403069737450280832
Offset: 1

Views

Author

Keywords

Comments

For a definition and examples of this problem see the comment section of A276449.
The present sequence a(n) gives the number of 2-orbits of such 2-color boards with n squares of one color under C_4.

Examples

			n = 4: one of the two 2-orbits is (o white, + black)
+ o + o   o o o +
o o o o   + o o o
o o o o   o o o +
o + o +   + o o o,
and one can take the first one as a representative.
For n = 3 there are a(3) = 2 2-orbits, represented by
+ o o       o o o
o + o  and  + + +
o o +       o o o.
The orbit structure for n=3 is 1^0 2^2 4^20; see A276449(3) = 0, a(3) = 2, A276452(3) = 20.
For the 12 2-orbits for n=4, see the representatives given in the link.
		

Crossrefs

Programs

  • Mathematica
    Table[(Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4])/2, {n, 23}] (* Michael De Vlieger, Sep 07 2016 *)
  • Python
    import math
    def nCr(n,r):
        f = math.factorial
        return f(n) / f(r) / f(n-r)
    # main program
    for j in range(101):
        i = j/2
        if j%2==0:
            b = nCr(2*i*i,i)
        else:
            b = nCr(2*i*(i+1),i)
        if j%4==0:
            c = nCr((j*j/4),(j/4))
        elif j%4==1:
            c = nCr(((j-1)/2)*((j-1)/2+1),((j-1)/4))
        else:
            c = 0
        print(str(j)+" "+str((b-c)/2))

Formula

a(n) = (binomial(2*i*i,i) - A276449(n))/2, for n = 2*i.
a(n) = (binomial(2*i*(i+1),i) - A276449(n))/2, for n = 2*i+1.

Extensions

Edited: Wolfdieter Lang, Oct 02 2016

A276452 Number of 4-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.

Original entry on oeis.org

0, 1, 20, 448, 13266, 486744, 21474640, 1106532352, 65221935740, 4327576834420, 319187489891256, 25904823417117120, 2294089575084464472, 220132629092378694832, 22751391952785312551232, 2519687900505221042995200, 297684761086121821704009432, 37370623083548749203599933004
Offset: 1

Views

Author

Keywords

Comments

For a definition and examples of this problem see the comment section of A276449. The present sequence a(n) gives the number of 4-orbits under C_4 of such 2-colored n X n grids with n squares of one color.

Examples

			a(2) = 1: the 4-orbit is
+ +   o +   o o   + o
o o   o +   + +   + o  ,
and one can take the first one as representative.
For n = 3 there are a(3) = 20 4-orbits, represented by
+ + +   + + o   + + o   + + o   + + o
o o o   + o o   o + o   o o +   o o o
o o o   o o o   o o o   o o o   + o o
--------------------------------------
+ + o   + + o   + o +   + o +   + o +
o o o   o o o   + o o   o + o   o o o
o + o   o o +   o o o   o o o   + o o
--------------------------------------
+ o +   + o o   + o o   + o o   + o o
o o o   + + o   + o +   + o o   + o o
o + o   o o o   o o o   o + o   o o +
--------------------------------------
+ o o   + o o   + o o   o + o   o + o
o + +   o + o   o o +   + + o   + o +
o o o   o + o   o + o   o o o   o o o .
--------------------------------------
The complete orbit structure for n=3 is 1^0 2^2 4^20, see A276449(3) = 0, A276451(3) = 2, a(3) = 20
		

Crossrefs

Programs

  • Mathematica
    f[n_] := If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4]; g[n_] := (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2; Table[(Binomial[n^2, n] - 2 g@ n - f@ n)/4, {n, 18}] (* Michael De Vlieger, Sep 07 2016 *)
  • Python
    import math
    def nCr(n,r):
        f = math.factorial
        return f(n) / f(r) / f(n-r)
    # main program
    for j in range(101):
        a = nCr(j*j,j)
        i = j/2
        if j%2==0:
            b = nCr(2*i*i,i)
        else:
            b = nCr(2*i*(i+1),i)
        print(str(j)+" "+str((a-b)/4))

Formula

a(n) = (A014062(n) - A276451(n)*2 - A276449(n))/4 for n = 1, 2, 3, ...
Previous Showing 11-20 of 46 results. Next