A155671
a(n) = 10^n - 9^n + 1^n.
Original entry on oeis.org
1, 2, 20, 272, 3440, 40952, 468560, 5217032, 56953280, 612579512, 6513215600, 68618940392, 717570463520, 7458134171672, 77123207545040, 794108867905352, 8146979811148160, 83322818300333432, 849905364703000880
Offset: 0
Equals
A016189 + 1. See that entry for more information.
Cf.
A155654,
A155655,
A155656,
A155657,
A155658,
A155659,
A155660,
A155661,
A155662,
A155663,
A155664,
A155665,
A155666,
A155667,
A155668,
A155669,
A155670.
-
[10^n-9^n+1: n in [0..25]]; // Wesley Ivan Hurt, Apr 21 2021
-
Table[10^n-9^n+1,{n,0,20}] (* or *) LinearRecurrence[{20,-109,90},{1,2,20},20] (* Harvey P. Dale, Nov 05 2017 *)
-
a(n)=10^n-9^n+1^n \\ Charles R Greathouse IV, Oct 16 2015
A344636
Numbers k such that half the numbers from 0 to k inclusive contain the digit "1".
Original entry on oeis.org
1, 17, 23, 161, 269, 271, 1457, 3397, 3419, 3421, 13121, 44685, 118097, 674909, 674933, 1062881
Offset: 1
1 is a term since among the numbers 0,1 exactly half contain a digit "1".
17 is a term since among the numbers 0,1,2,...,17 exactly half contain a digit "1".
- Andrew Hilton, 101 Puzzles to Solve on your Microcomputer, 1984, HARRAP, page 57.
-
Select[2Range@2000,Length@Select[Range[0,#-1],MemberQ[IntegerDigits@#,1]&]==#/2&]-1 (* Giorgos Kalogeropoulos, Jul 28 2021 *)
A327560
The number of integers m in the range 0 < m < 10^n which are divisible by one or more of their own digits (A038770).
Original entry on oeis.org
9, 68, 708, 7578, 79952, 832506, 8585583, 87944417, 896452992, 9104962748, 92222435013, 932113080563, 9405187219507, 94771322677210, 953907792350911, 9592689086414459, 96392955785210896, 967997194404428275, 9715595409791983073
Offset: 1
A343237
Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 19, 7, 1, 1, 31, 65, 37, 9, 1, 1, 63, 211, 175, 61, 11, 1, 1, 127, 665, 781, 369, 91, 13, 1, 1, 255, 2059, 3367, 2101, 671, 127, 15, 1, 1, 511, 6305, 14197, 11529, 4651, 1105, 169, 17, 1
Offset: 0
The array A begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
-------------------------------------------------------------
0: 1 1 1 1 1 1 1 1 1 1 ...
1: 1 3 5 7 9 11 13 15 17 19 ...
2: 1 7 19 37 61 91 127 169 217 271 ...
3: 1 15 65 175 369 671 1105 1695 2465 3439 ...
4: 1 31 211 781 2101 4651 9031 15961 26281 40951 ...
5: 1 63 665 3367 11529 31031 70993 144495 269297 468559 ...
...
The triangle T begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
-------------------------------------------------------------
0: 1
1: 1 1
2: 1 3 1
3: 1 7 5 1
4: 1 15 19 7 1
5: 1 31 65 37 9 1
6: 1 63 211 175 61 11 1
7: 1 127 665 781 369 91 13 1
8: 1 255 2059 3367 2101 671 127 15 1
9: 1 511 6305 14197 11529 4651 1105 169 17 1
10: 1 1023 19171 58975 61741 31031 9031 1695 217 19 1
...
Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_)
The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are:
j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is, 3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2;
j=2 (twice 4): 144, 414, 441; 244, 424, 442; 344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3;
j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3).
Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
Row sequences of array A (nexus numbers):
A000012,
A005408,
A003215,
A005917(k+1),
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528.
Column sequences of array A:
A000012,
A000225(n+1),
A001047(n+1),
A005061(n+1),
A005060(n+1),
A005062(n+1),
A016169(n+1),
A016177(n+1),
A016185(n+1),
A016189(n+1),
A016195(n+1),
A016197(n+1).
-
egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
cx := n -> series(n!*coeff(ser, x, n), y, 12):
Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9):
for n from 0 to 5 do Arow(n) od; # Peter Luschny, May 10 2021
-
A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 10 2021 *)
A199819
Primes of the form 10^k-9^k.
Original entry on oeis.org
19, 271, 5217031, 68618940391, 8649148282327007911, 95289871302753755165078396311
Offset: 1
A248226
a(n) = 10^n - 3^n.
Original entry on oeis.org
0, 7, 91, 973, 9919, 99757, 999271, 9997813, 99993439, 999980317, 9999940951, 99999822853, 999999468559, 9999998405677, 99999995217031, 999999985651093, 9999999956953279, 99999999870859837, 999999999612579511, 9999999998837738533, 99999999996513215599
Offset: 0
Cf. similar sequences listed in
A248225.
-
[10^n-3^n: n in [0..30]];
-
Table[10^n - 3^n, {n, 0, 25}] (* or *) CoefficientList[Series[(7 x)/((1 - 3 x) (1 - 10 x)), {x, 0, 30}], x]
LinearRecurrence[{13,-30},{0,7},30] (* Harvey P. Dale, Jul 10 2021 *)
-
a(n) = 10^n - 3^n \\ Michel Marcus, Oct 05 2014
A344474
Least number k such that half of the numbers from 0 to k inclusive contain the digit n.
Original entry on oeis.org
1, 1, 2915, 39365, 472391, 590489, 6377291, 7440173, 8503055, 9565937
Offset: 0
a(0)=1 since among the numbers 0,1 exactly half contain a digit "0" and 1 is the smallest number where this occurs.
a(1)=1 since among the numbers 0,1 exactly half contain a digit "1" and 1 is the smallest number where this occurs.
a(2)=2915 since among the numbers 0,1,2,...,2915 exactly half contain a digit "2" and 2915 is the smallest number where this occurs.
a(3)=39365 since among the numbers 0,1,2,...,39365 exactly half contain a digit "3" and 39365 is the smallest number where this occurs.
- Andrew Hilton, 101 Puzzles to Solve on your Microcomputer, 1984, HARRAP, page 57.
-
a(n)={if(n>=1&&n<10, my(k=0); while(n*(2*9^k-10^k)>10^k, k++); 2*9^k*n - 1, n==0)} \\ Andrew Howroyd, May 25 2021
-
for z in range (0, 10):
z_s = str(z)
counts=0
for x in range (0,1000000000):
x_s = str(x)
if z_s in x_s:
counts += 1
if counts / (x+1) == 0.5:
print(x)
break
A344634
Numbers k such that half the numbers from 0 to k inclusive contain the digit "0".
Original entry on oeis.org
1, 10761677, 14958585, 14960717, 14961735, 15013205, 15588833, 15590573, 15591959, 15591961, 15592031, 15592229, 15592231, 15603695, 15633495, 15633503, 15633517, 16076087, 16263743, 20327615
Offset: 1
1 is a term since among the numbers 0,1 exactly half contain a digit "0".
10761677 is a term since among the numbers 0,1,2,...,10761677 exactly half contain a digit "0".
- Andrew Hilton, 101 Puzzles to Solve on your Microcomputer, 1984, HARRAP, page 57.
-
def afind(limit):
count0 = [0, 1]
for k in range(1, limit+1):
count0['0' in str(k)] += 1
if count0[0] == count0[1]: print(k, end=", ")
afind(3*10**7) # Michael S. Branicky, May 25 2021
A095807
Number of integers from 0 to 10^n - 1 whose decimal digits include at least one 0.
Original entry on oeis.org
1, 10, 181, 2620, 33571, 402130, 4619161, 51572440, 564151951, 6077367550, 64696307941, 682266771460, 7140400943131, 74263608488170, 768372476393521, 7915352287541680, 81238170587875111
Offset: 1
a(3)=181 because among the integers from 0 to 999 there are 181 numbers which contain at least 1 zero.
-
[10^n + 9/8 - 9^(1+n)/8: n in [1..20]]; // Vincenzo Librandi, Aug 14 2013
-
LinearRecurrence[{20,-109,90},{1,10,181},20] (* or *) Rest[ CoefficientList[ Series[(1-19x+99x^2)/((1-x)(1-10x)(1-9x)),{x,0,20}], x]] (* Harvey P. Dale, Jun 20 2015 *)
-
a(n) = 10^n + 9/8 - 9^(1+n)/8; \\ Michel Marcus, Aug 13 2013
A245805
a(n) = 12^n mod 11^n.
Original entry on oeis.org
0, 1, 23, 397, 6095, 87781, 1214423, 16344637, 1263934, 443884970, 10042515022, 172385029466, 2639243694814, 3425068947279, 144668963799141, 2875277066339415, 1085339440747772, 196822992743261908, 4383664026916317980, 13684547128550195393, 470010017784675076171
Offset: 0
Cf. k^n mod (k-1)^n:
A002380 (k=3),
A064629 (k=4),
A138589 (k=5),
A138649 (k=6),
A139786 (k=7),
A138973 (k=8),
A139733 (k=9),
A016189 (k=10),
A016195 (k=11), this sequence (k=12),
-
[12^n mod 11^n: n in [0..25]];
-
Table[PowerMod[12, n, 11^n], {n, 0, 30}]
-
vector(50, n, 12^(n-1)%11^(n-1)) \\ Derek Orr, Aug 04 2014
Comments