cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 69 results. Next

A169669 (first digit of n) * (last digit of n) in decimal representation.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 05 2010

Keywords

Comments

a(n) = A000030(n)*A010879(n);
a(n) = A115300(n) for n<=100, A115300(101) = 0;
a(n) = A111707(n) for n<=109, A111707(110) = 1;
0 <= a(n) <= 81, range = A174995;
a(10*n + n mod 10) = a(n);
a(A008592(n)) = 0;
a(n) = a(A004086(n))*A168184(n);

Crossrefs

Programs

  • Haskell
    a169669 n = a000030 n * mod n 10
    -- Reinhard Zumkeller, Apr 29 2015
    
  • Python
    def a(n): return int(str(n)[0])*(n%10)
    print([a(n) for n in range(81)]) # Michael S. Branicky, Jul 13 2022

A306277 Numbers congruent to 1 or 8 mod 10.

Original entry on oeis.org

1, 8, 11, 18, 21, 28, 31, 38, 41, 48, 51, 58, 61, 68, 71, 78, 81, 88, 91, 98, 101, 108, 111, 118, 121, 128, 131, 138, 141, 148, 151, 158, 161, 168, 171, 178, 181, 188, 191, 198, 201, 208, 211, 218, 221, 228, 231, 238, 241, 248, 251, 258, 261, 268, 271, 278, 281, 288, 291, 298, 301, 308, 311, 318, 321
Offset: 1

Views

Author

Davis Smith, Feb 02 2019

Keywords

Comments

A007310(a(n)+1) is always a multiple of 5.
a(1) = 1, a(n+1) = a(n)+7 when n is odd, a(n+1) = a(n)+3 when n is even.
a(n) mod 6 follows the following pattern: 1,2,5,0,3,4,1,2,5,0,3,4, and so on.
A020639(A007310(a(n)+1)) = 5.

Crossrefs

Cf. A017281, A017365 (bisections).
One less than A273669.

Programs

  • Maple
    seq(seq(10*i+j, j=[1, 8]), i=0..350);
  • Mathematica
    Select[Range[350], MemberQ[{1, 8}, Mod[#, 10]] &]
  • PARI
    for(n=1, 350, if((n%10==1) || (n%10==8), print1(n, ", ")))
    
  • PARI
    Vec(x*(1 + 7*x + 2*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 09 2019

Formula

a(n) = 5*n - 2*A000034(n+1).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = A273669(n) - 1. - Antti Karttunen, Feb 07 2019
G.f.: x*(1 + 7*x + 2*x^2) / ((1 - x)^2*(1 + x)). - Colin Barker, Feb 09 2019
E.g.f.: 2 + (5*x - 3)*exp(x) + exp(-x). - David Lovler, Sep 07 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = (5+sqrt(5))^(3/2)*phi*Pi/(100*sqrt(2)) + log(phi)/(2*sqrt(5)) + log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023

A348487 Positive numbers whose square starts and ends with exactly one 1.

Original entry on oeis.org

1, 11, 39, 41, 101, 111, 119, 121, 129, 131, 139, 141, 319, 321, 329, 331, 349, 351, 359, 361, 369, 371, 379, 381, 389, 391, 399, 401, 409, 411, 419, 421, 429, 431, 439, 441, 1001, 1009, 1011, 1019, 1021, 1029, 1031, 1039, 1041, 1099, 1101, 1109, 1111, 1119, 1121, 1129, 1131, 1139
Offset: 1

Views

Author

Bernard Schott, Oct 21 2021

Keywords

Comments

When a square ends with 1, this square ends with exactly one 1.
Sequences A000533 and A253213 show that there are an infinity of terms. The square of their terms, for n >= 3, starts and ends with exactly one 1. Also, the numbers 119, 1119, 11119, ..., ((10^k + 71) / 9)^2, (k >= 3) are terms. The squares ((10^k + 71) / 9)^2, have the last digit 1 and because 12*10^(2*k - 3) < ((10^k + 71) / 9)^2 <13*10^(2*k - 3), for k >= 3, the squares ((10^k + 71) / 9)^2, k >= 4, start with 12. - Marius A. Burtea, Oct 21 2021

Examples

			39 is a term since 39^2 = 1521.
109 is not a term since 109^2 = 11881.
119 is a term since 119^2 = 14161.
		

Crossrefs

Cf. A045855, A090771, A253213, A273372 (squares ending with 1), A017281, A017377.
Cf. A000533, A253213 for n >= 2 (subsequences).
Subsequence of A305719.

Programs

  • Magma
    [1] cat [n:n in [2..1200]|Intseq(n*n)[1] eq 1 and Intseq(n*n)[#Intseq(n*n)] eq 1 and Intseq(n*n)[-1+#Intseq(n*n)] ne 1]; // Marius A. Burtea, Oct 21 2021
  • Mathematica
    Join[{1}, Select[Range[11, 1200], (d = IntegerDigits[#^2])[[1]] == d[[-1]] == 1 && d[[2]] != 1 &]] (* Amiram Eldar, Oct 21 2021 *)
  • PARI
    isok(k) = my(d=digits(sqr(k))); (d[1]==1) && (d[#d]==1) && if (#d>2, (d[2]!=1) && (d[#d-1]!=1), 1); \\ Michel Marcus, Oct 21 2021
    
  • Python
    from itertools import count, takewhile
    def ok(n):
      s = str(n*n); return len(s.rstrip("1")) == len(s.lstrip("1")) == len(s)-1
    def aupto(N):
      r = takewhile(lambda x: x<=N, (10*i+d for i in count(0) for d in [1, 9]))
      return [k for k in r if ok(k)]
    print(aupto(1140)) # Michael S. Branicky, Oct 21 2021
    

A154428 Primes of the form 50n^2 + 10n + 1.

Original entry on oeis.org

61, 1301, 1861, 2521, 5101, 7321, 8581, 9941, 14621, 16381, 20201, 24421, 26681, 34061, 36721, 51521, 68821, 76441, 97241, 101701, 106261, 110921, 135721, 163021, 168781, 199081, 205441, 218461, 252761, 282001, 304981, 312841, 337021, 353641
Offset: 1

Views

Author

Vincenzo Librandi, Jan 09 2009

Keywords

Comments

Subsequence of A027862 associated with the values of A027861 that are multiples of 5. [R. J. Mathar, Jan 12 2009]

Crossrefs

Programs

  • GAP
    Filtered(List([1..100],n->50*n^2+10*n+1),IsPrime); # Muniru A Asiru, Apr 25 2019
  • Magma
    [a: n in [0..100] | IsPrime(a) where a is 50*n^2 + 10*n + 1]; // Vincenzo Librandi, Jul 23 2012
    
  • Maple
    select(isprime,[50*n^2+10*n+1$n=1..100])[]; # Muniru A Asiru, Apr 25 2019
  • Mathematica
    Select[Table[50n^2+10n+1,{n,0,200}],PrimeQ] (* Vincenzo Librandi, Jul 23 2012 *)
  • PARI
    for (n=0, 100, if (isprime (k=50*n^2+10*n+1), print1 (k, ", "))); \\ Vincenzo Librandi, Jul 23 2012
    

Extensions

Replaced 13721 by 135721 - R. J. Mathar, Jan 12 2009

A168459 a(n) = (10*n + 5*(-1)^n - 3)/2.

Original entry on oeis.org

1, 11, 11, 21, 21, 31, 31, 41, 41, 51, 51, 61, 61, 71, 71, 81, 81, 91, 91, 101, 101, 111, 111, 121, 121, 131, 131, 141, 141, 151, 151, 161, 161, 171, 171, 181, 181, 191, 191, 201, 201, 211, 211, 221, 221, 231, 231, 241, 241, 251, 251, 261, 261, 271, 271, 281
Offset: 1

Views

Author

Vincenzo Librandi, Nov 26 2009

Keywords

Crossrefs

Programs

  • Magma
    [1+10*Floor(n/2): n in [1..70]]; // Vincenzo Librandi, Sep 19 2013
  • Mathematica
    Table[5 n + 5 (-1)^n/2 - 3/2, {n, 60}] (* Bruno Berselli, Sep 16 2013 *)
    Table[1 + 10 Floor[n/2], {n, 70}] (* or *) CoefficientList[Series[(1 + 10 x - x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)

Formula

a(n) = 10*n - a(n-1) - 8 with n>1, a(1)=1.
From Bruno Berselli, Sep 16 2013: (Start)
G.f.: x*(1 + 10*x - x^2)/((1+x)*(1-x)^2).
a(n) = A168457(n) - 1 = 2*A168282(n) - 1.
a(n) = a(n-1) +a(n-2) -a(n-3). (End)
a(n) = 1 + 10*floor(n/2). - Vincenzo Librandi, Sep 19 2013
E.g.f.: (1/2)*(5 - 2*exp(x) + (10*x - 3)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 23 2016

Extensions

New definition by Bruno Berselli, Sep 16 2013

A208260 Nonprime numbers starting and ending with digit 1.

Original entry on oeis.org

1, 111, 121, 141, 161, 171, 1001, 1011, 1041, 1071, 1081, 1101, 1111, 1121, 1131, 1141, 1161, 1191, 1211, 1221, 1241, 1251, 1261, 1271, 1281, 1311, 1331, 1341, 1351, 1371, 1391, 1401, 1411, 1421, 1431, 1441, 1461, 1491, 1501, 1521, 1541, 1551, 1561, 1581, 1591
Offset: 1

Views

Author

Jaroslav Krizek, Feb 24 2012

Keywords

Comments

Complement of A062332 with respect to A208259. Supersequence of A208261 (nonprime numbers with all divisors starting and ending with digit 1).

Crossrefs

Cf. A208259 (number starting and ending with a number 1), A062332 (primes starting and ending with a number 1).

Programs

  • Haskell
    a208260 n = a208260_list !! (n-1)
    a208260_list = filter ((== 0) . a010051') a208259_list
    -- Reinhard Zumkeller, Jul 16 2014
  • Mathematica
    Select[Range[2000], ! PrimeQ[#] && First[IntegerDigits[#]] == 1 && Last[IntegerDigits[#]] == 1 &] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2012 *)
    Join[{1},Select[Range[2000],CompositeQ[#]&&NumberDigit[#,0] == NumberDigit[ #,IntegerLength[ #]-1]==1&]] (* Harvey P. Dale, Aug 01 2021 *)

Formula

(1 - A010051(a(n))) * A000030(a(n)) * (a(n) mod 10) = 1. - Reinhard Zumkeller, Jul 16 2014

A273372 Squares ending in digit 1.

Original entry on oeis.org

1, 81, 121, 361, 441, 841, 961, 1521, 1681, 2401, 2601, 3481, 3721, 4761, 5041, 6241, 6561, 7921, 8281, 9801, 10201, 11881, 12321, 14161, 14641, 16641, 17161, 19321, 19881, 22201, 22801, 25281, 25921, 28561, 29241, 32041, 32761, 35721, 36481, 39601, 40401
Offset: 1

Views

Author

Vincenzo Librandi, May 21 2016

Keywords

Comments

Intersection of A000290 and A017281; also, union of A017282 and A017378. The square roots are in A017281 or in A017377 (numbers ending in 1 or 9, respectively). - David A. Corneth, May 22 2016

Crossrefs

Cf. A017281 (numbers ending in 1), A017283 (cubes ending in 1).
Cf. similar sequences listed in A273373.

Programs

  • Magma
    /* By definition: */ [n^2: n in [0..200] | Modexp(n,2,10) eq 1];
    
  • Magma
    [5*(10*n+(-1)^n-5)*(2*n+(-1)^n-1)/4+1: n in [1..50]];
    
  • Mathematica
    Table[5 (10 n + (-1)^n - 5) (2 n + (-1)^n - 1)/4 + 1, {n, 1, 50}]
  • Python
    A273372_list = [(10*n+m)**2 for n in range(10**3) for m in (1,9)] # Chai Wah Wu, May 24 2016
  • Ruby
    p (1..(n + 1) / 2).inject([]){|s, i| s + [(10 * i - 9) ** 2, (10 * i - 1) ** 2]}[0..n - 1] # Seiichi Manyama, May 24 2016
    

Formula

G.f.: x*(1 + 80*x + 38*x^2 + 80*x^3 + x^4) / ((1 + x)^2*(1 - x)^3).
a(n) = 10*A132356(n-1) + 1 = 5*(10*n+(-1)^n-5)*(2*n+(-1)^n-1)/4+1.
a(n) = (5*n - 5/2 + (3/2)*(-1)^n)^2 = 25*n^2 - 25*n + 17/2 + 15*n*(-1)^n - (15/2)*(-1)^n. - David A. Corneth, May 21 2016
a(n) = A090771(n)^2. - Michel Marcus, May 25 2016
Sum_{n>=1} 1/a(n) = Pi^2*(3+sqrt(5))/50. - Amiram Eldar, Feb 16 2023

Extensions

Edited by Bruno Berselli, May 24 2016

A306289 The smallest prime factor of numbers greater than 1 and coprime to 6.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 5, 29, 31, 5, 37, 41, 43, 47, 7, 53, 5, 59, 61, 5, 67, 71, 73, 7, 79, 83, 5, 89, 7, 5, 97, 101, 103, 107, 109, 113, 5, 7, 11, 5, 127, 131, 7, 137, 139, 11, 5, 149, 151, 5, 157, 7, 163, 167, 13, 173, 5, 179, 181, 5, 11, 191, 193
Offset: 1

Views

Author

Davis Smith, Feb 03 2019

Keywords

Comments

a(n) is the least prime factor of the n-th number that is greater than 1 and congruent to 1 or 5 (mod 6).
a(n) = 5 when n is congruent to {1, 8} (mod 10) (n is a term in A017281, A017365, or A306277). a(n) = 7 when n is congruent to {2, 11} (mod 14) but not {1, 8} (mod 10). a(n) = 11 when n is congruent to {3, 18} (mod 22) but not a case where it equals 5 or 7. a(n) = 13 when n is congruent to {4, 21} (mod 26) (n is a term in A306285) but not a case where it equals 5, 7, or 11. a(n) = 17 when n is congruent to {5, 28} (mod 34) but not a case where it equals 5, 7, 11, or 13. a(n) = 19 when n is congruent to {6, 31} (mod 38) (n is a term in A306331) but not a case where it equals 5, 7, 11, 13, or 17.
Conjecture: This pattern continues indefinitely. a(n) = A007310(m + 1) when n is congruent to {m, A306277(m + 1)} (mod A091999(m + 1)) but not congruent to {k, A306277(k + 1)} (mod A091999(k + 1)), m > k >= 1. The indices of the first appearance of a number in this sequence supports this conjecture in that they are never, for m > 0, congruent to A306277(m + 1) mod A091999(m + 1).

Examples

			a(n) is the least term, other than 0, in n-th row of the array A(m,n), where A(m,n) is A007310(m + 1) when A007310(n + 1) mod A007310(m + 1) is congruent to 0, otherwise 0.
Table begins
  \m  1 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 ...
  n\
   1| 5 0  0  0  0  0  0  0  0   0   0   0   0   0   0   0 ...
   2| 0 7  0  0  0  0  0  0  0   0   0   0   0   0   0   0 ...
   3| 0 0 11  0  0  0  0  0  0   0   0   0   0   0   0   0 ...
   4| 0 0  0 13  0  0  0  0  0   0   0   0   0   0   0   0 ...
   5| 0 0  0  0 17  0  0  0  0   0   0   0   0   0   0   0 ...
   6| 0 0  0  0  0 19  0  0  0   0   0   0   0   0   0   0 ...
   7| 0 0  0  0  0  0 23  0  0   0   0   0   0   0   0   0 ...
   8| 5 0  0  0  0  0  0 25  0   0   0   0   0   0   0   0 ...
   9| 0 0  0  0  0  0  0  0 29   0   0   0   0   0   0   0 ...
  10| 0 0  0  0  0  0  0  0  0  31   0   0   0   0   0   0 ...
  11| 5 7  0  0  0  0  0  0  0   0  35   0   0   0   0   0 ...
  12| 0 0  0  0  0  0  0  0  0   0   0  37   0   0   0   0 ...
  13| 0 0  0  0  0  0  0  0  0   0   0   0  41   0   0   0 ...
  14| 0 0  0  0  0  0  0  0  0   0   0   0   0  43   0   0 ...
  15| 0 0  0  0  0  0  0  0  0   0   0   0   0   0  47   0 ...
  16| 0 7  0  0  0  0  0  0  0   0   0   0   0   0   0  49 ...
For the n-th row of this square array, the leftmost terms, other than 0, are the factors of A(n,n). A(n,n) = A007310(n + 1). If for every m, m < n, A(m,n) = 0, then a(n) = A007310(n + 1) and A007310(n + 1) is prime.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Part Eight, Chap. 2, Section 2, Problems 96 and 105.

Crossrefs

Programs

  • Maple
    seq(min(op(numtheory[factorset] (6*ceil(n/2)+(-1)^n))), n=1..64) ;
  • Mathematica
    FactorInteger[Rest@ Flatten@ Array[6 # + {1, 5} &, 33, 0]][[All, 1, 1]] (* Michael De Vlieger, Feb 15 2019 *)
    FactorInteger[#][[1,1]]&/@Select[Range[2,200],CoprimeQ[#,6]&] (* Harvey P. Dale, Jul 10 2020 *)
  • PARI
    for(n=2, 211, if((n%6==1)||(n%6==5), print1(factor(n)[1,1], ", ")))
    
  • PARI
    vector(64,n,factor(6*ceil(n/2)+(-1)^n)[1,1])
    
  • PARI
    a(n) = n++; factor(n\2*6-(-1)^n)[1,1]; \\ Michel Marcus, Feb 06 2019

Formula

a(n) = A020639(A007310(n + 1)).
a(n) = A020639(3n + A000034(n + 1)).
a(n) = A020639(6*ceiling(n/2) + (-1)^n).
a(floor(prime(n + 2)/3)) = prime(n + 2).

A322489 Numbers k such that k^k ends with 4.

Original entry on oeis.org

2, 18, 22, 38, 42, 58, 62, 78, 82, 98, 102, 118, 122, 138, 142, 158, 162, 178, 182, 198, 202, 218, 222, 238, 242, 258, 262, 278, 282, 298, 302, 318, 322, 338, 342, 358, 362, 378, 382, 398, 402, 418, 422, 438, 442, 458, 462, 478, 482, 498, 502, 518, 522, 538, 542, 558
Offset: 1

Views

Author

Bruno Berselli, Dec 12 2018

Keywords

Comments

Also numbers k == 2 (mod 4) such that 2^k and k^2 end with the same digit.
Numbers congruent to {2, 18} mod 20. - Amiram Eldar, Feb 27 2023

Crossrefs

Subsequence of A139544, A235700.
Numbers k such that k^k ends with d: A008592 (d=0), A017281 (d=1), A067870 (d=3), this sequence (d=4), A017329 (d=5), A271346 (d=6), A322490 (d=7), A017377 (d=9).

Programs

  • GAP
    List([1..70], n -> 10*n+3*(-1)^n-5);
    
  • Julia
    [10*n+3*(-1)^n-5 for n in 1:70] |> println
    
  • Magma
    [10*n+3*(-1)^n-5: n in [1..70]];
    
  • Maple
    select(n->n^n mod 10=4,[$1..558]); # Paolo P. Lava, Dec 18 2018
  • Mathematica
    Table[10 n + 3 (-1)^n - 5, {n, 1, 60}]
  • Maxima
    makelist(10*n+3*(-1)^n-5, n, 1, 70);
    
  • PARI
    apply(A322489(n)=10*n+3*(-1)^n-5, [1..70]) \\ M. F. Hasler, Dec 14 2018
    
  • PARI
    Vec(2*x*(1 + 8*x + x^2) / ((1 - x)^2*(1 + x)) + O(x^70)) \\ Colin Barker, Dec 13 2018
  • Python
    [10*n+3*(-1)**n-5 for n in range(1, 70)]
    
  • Sage
    [10*n+3*(-1)^n-5 for n in (1..70)]
    

Formula

O.g.f.: 2*x*(1 + 8*x + x^2)/((1 + x)*(1 - x)^2).
E.g.f.: 2 + 3*exp(-x) + 5*(2*x - 1)*exp(x).
a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).
a(n) = 10*n + 3*(-1)^n - 5. Therefore:
a(n) = 10*n - 8 for odd n;
a(n) = 10*n - 2 for even n.
a(n+2*k) = a(n) + 20*k.
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(2*Pi/5)*Pi/20 = sqrt(5+2*sqrt(5))*Pi/20. - Amiram Eldar, Feb 27 2023

A346508 Positive integers k such that 10*k+1 is equal to the product of two integers greater than 1 and ending with 1 (A346507).

Original entry on oeis.org

12, 23, 34, 44, 45, 56, 65, 67, 78, 86, 89, 96, 100, 107, 111, 122, 127, 128, 133, 144, 149, 155, 158, 166, 168, 170, 177, 188, 189, 191, 199, 209, 210, 212, 220, 221, 232, 233, 243, 250, 251, 254, 260, 265, 275, 276, 282, 287, 291, 296, 298, 309, 311, 313, 317
Offset: 1

Views

Author

Stefano Spezia, Jul 21 2021

Keywords

Examples

			107 is a term because 21*51 = 1071 = 107*10 + 1.
		

Crossrefs

Cf. A016873 (ending with 5), A017281, A324298 (ending with 6), A346507, A346509, A346510.

Programs

  • Mathematica
    a={}; For[n=1, n<=350, n++, For[k=1, kMax[10a+1], AppendTo[a, n]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b//10 for a in range(11, 10*lim//11+2, 10) for b in range(a, 10*lim//a+2, 10) if a*b//10 <= lim))
    print(aupto(318)) # Michael S. Branicky, Aug 21 2021

Formula

a(n) = (A346507(n) - 1)/10.
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 1.
The conjecture is true since a(n) = (A346507(n) - 1)/10 and lim_{n->infinity} A346507(n)/A346507(n-1) = 1. - Stefano Spezia, Aug 21 2021
Previous Showing 41-50 of 69 results. Next