cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 110 results. Next

A055546 a(n) = (-1)^(n+1) * 2^n * n!^2.

Original entry on oeis.org

-1, 2, -16, 288, -9216, 460800, -33177600, 3251404800, -416179814400, 67421129932800, -13484225986560000, 3263182688747520000, -939796614359285760000, 317651255653438586880000, -124519292216147926056960000, 56033681497266566725632000000
Offset: 0

Views

Author

Keywords

Comments

Coefficient of the Cayley-Menger determinant of order n.
A roller coaster has n rows of seats, each of which has room for two people. |a(n)| is the number of ways n men and n women can be seated with a man and a woman in each row. - Geoffrey Critzer, Dec 17 2011
The o.g.f. of 1/a(n) is -BesselI(0,i*sqrt(2*x)), with i the imaginary unit. See Abramowitz-Stegun (reference and link under A008277), p. 375, 9.6.10. - Wolfdieter Lang, Jan 10 2012
|a(n)|/2 is the number of integers k such that the digits of k and 2*k, written in base 2*n, are permutations of 0, 1, ..., 2*n-1. - Yifan Xie, Apr 12 2025

Crossrefs

Row of A340591 (in absolute values).

Programs

  • Mathematica
    Table[(-1)^(n+1)2^n n!^2, {n, 0, 20}]
  • PARI
    a(n)={(-1)^(n+1) * 2^n * n!^2} \\ Andrew Howroyd, Nov 07 2019

Formula

E.g.f.: -arcsinh(x/sqrt(2))^2. - Vladeta Jovovic, Aug 30 2004
Sum_{n>=0} |a(n)|/(2*n+1)! = Pi/2. - Daniel Suteu, Feb 06 2017
a(n) = (-1)^(n+1) * A000079(n) * A001044(n). - Terry D. Grant, May 21 2017
From Amiram Eldar, Nov 18 2020: (Start)
Sum_{n>=0} 1/a(n) = (-1) * A334383.
Sum_{n>=0} (-1)^(n+1)/a(n) = A334381. (End)

Extensions

Terms a(14) and beyond from Andrew Howroyd, Nov 07 2019

A162330 Blocks of 4 numbers of the form 2k, 2k-1, 2k, 2k+1, k=1,2,3,4,...

Original entry on oeis.org

2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12, 13, 14, 13, 14, 15, 16, 15, 16, 17, 18, 17, 18, 19, 20, 19, 20, 21, 22, 21, 22, 23, 24, 23, 24, 25, 26, 25, 26, 27, 28, 27, 28, 29, 30, 29, 30, 31, 32, 31, 32, 33, 34, 33, 34, 35, 36, 35, 36, 37, 38, 37
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 01 2009

Keywords

Comments

This illustrates the infinite product Pi/2 = Product_{k>=1} ((2*k)/(2k-1))*((2k)/(2k+1)): read the 4 terms of numerator and denominator of the factor in the product in that order shown.
Number of roots of the polynomial 1+x+x^2+...+x^(n+1) = (x^(n+2)-1)/(x-1) in the left half plane. - Michel Lagneau, Oct 30 2012

Crossrefs

Programs

Formula

a(n) = a(n-1) + a(n-4) - a(n-5).
G.f.: x*(2-x+x^2+x^3-x^4)/((1+x)*(1+x^2)*(1-x)^2).
a(n) = n + 1 - 2*floor( (n+2)/4 ). - M. F. Hasler, Nov 01 2012
a(n) = (2*n + 3 - (-1)^n + 2*(-1)^((2*n - 1 + (-1)^n)/4))/4. - Luce ETIENNE, Mar 08 2016
Sum_{n>=1} (-1)^n/a(n) = 2*log(2) - 1. - Amiram Eldar, Sep 10 2023

Extensions

Edited by R. J. Mathar, Sep 16 2009

A163746 Expansion of (theta_3(q)^2 + 3 * theta_3(q^3)^2) / 4 - 1 in powers of q.

Original entry on oeis.org

1, 1, 3, 1, 2, 3, 0, 1, 1, 2, 0, 3, 2, 0, 6, 1, 2, 1, 0, 2, 0, 0, 0, 3, 3, 2, 3, 0, 2, 6, 0, 1, 0, 2, 0, 1, 2, 0, 6, 2, 2, 0, 0, 0, 2, 0, 0, 3, 1, 3, 6, 2, 2, 3, 0, 0, 0, 2, 0, 6, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 9, 0, 0, 6, 0, 2, 1, 2, 0, 0, 4, 0, 6, 0, 2, 2, 0, 0, 0, 0, 0, 3, 2, 1, 0, 3, 2, 6, 0, 2, 0
Offset: 1

Views

Author

Michael Somos, Aug 03 2009

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 + 3*q^3 + q^4 + 2*q^5 + 3*q^6 + q^8 + q^9 + 2*q^10 + 3*q^12 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 82, Eq. (32.53).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, (-1)^Quotient[#, 6] {1, 0, 2, 0, 1, 0}[[Mod[#, 6, 1]]] &]]; (* Michael Somos, Sep 02 2015 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[# < 3, 1, # == 3, Mod[#2, 2] 2 + 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger @ n)]; (* Michael Somos, Sep 02 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^2 + 3 EllipticTheta[ 3, 0, q^3]^2) / 4 - 1, {q, 0, n}]; (* Michael Somos, Sep 02 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, ((d%2) * ((d%3==0) + 1)) * (-1)^(d\6)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p==3, e%2*2 + 1, p%4==1, e+1, 1-e%2)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 * eta(x^6 + A)^3 / (eta(x + A) * eta(x^3 + A) * eta(x^12 + A)^2) - 1, n))};

Formula

Expansion of psi(q) * psi(q^2) * chi(q^3) * chi(-q^6) - 1 in powers of q where psi(), chi() are Ramanujan theta functions.
Expansion of eta(q^2) * eta(q^4)^2 * eta(q^6)^3 / (eta(q) * eta(q^3) * eta(q^12)^2) - 1 in powers of q.
Moebius transform is period 12 sequence [ 1, 0, 2, 0, 1, 0, -1, 0, -2, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = 1, a(3^e) = 2-(-1)^e, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) == (1+(-1)^e)/2 if p == 3 (mod 4). [corrected by Amiram Eldar, Nov 14 2023]
G.f.: Sum_{k>0} (x^k + x^(3*k)) / (1 - x^(2*k) + x^(4*k)).
a(n) = A125061(n) unless n=0. a(12*n + 7) = a(12*n + 11) = 0.
a(2*n) = a(n). a(2*n + 1) = A138741(n). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). - Michael Somos, Sep 02 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Nov 14 2023

A236367 Dihedral angle in a regular icosahedron (radians).

Original entry on oeis.org

2, 4, 1, 1, 8, 6, 4, 9, 9, 7, 3, 6, 2, 8, 2, 6, 8, 7, 5, 0, 0, 7, 8, 4, 6, 7, 2, 3, 4, 6, 6, 1, 8, 2, 1, 8, 8, 8, 0, 0, 6, 6, 3, 4, 8, 5, 3, 2, 7, 3, 9, 2, 1, 3, 0, 2, 6, 5, 9, 9, 5, 1, 0, 0, 8, 4, 5, 9, 9, 7, 5, 0, 6, 6, 1, 9, 4, 4, 1, 8, 5, 9, 8, 3, 2, 5, 5, 1, 4, 1, 7, 5, 2, 2, 6, 4, 3, 5, 6, 7, 7, 7, 4, 0, 5
Offset: 1

Views

Author

Stanislav Sykora, Jan 23 2014

Keywords

Examples

			2.41186499736282687500784672346618218880066348532739213...
		

Crossrefs

Cf. A001622, Platonic solids dihedral angles: A137914 (tetrahedron), A156546 (octahedron), A019669 (cube), A137218 (dodecahedron).

Programs

  • Mathematica
    RealDigits[2 * ArcTan[GoldenRatio^2], 10, 120][[1]] (* Amiram Eldar, May 17 2023 *)
  • PARI
    2*atan((3+sqrt(5))/2)

Formula

Equals 2*arctan(phi^2) = 2*arctan(A001622^2) = 2*arctan((3+sqrt(5))/2).

A236555 Decimal expansion of the steradian solid angle subtended by one triangular facet of the cuboctahedron.

Original entry on oeis.org

5, 5, 1, 2, 8, 5, 5, 9, 8, 4, 3, 2, 5, 3, 0, 8, 0, 7, 9, 4, 2, 1, 4, 4, 1, 5, 1, 4, 6, 4, 4, 5, 9, 2, 4, 2, 9, 3, 3, 8, 5, 0, 6, 2, 8, 6, 9, 0, 1, 7, 8, 6, 9, 6, 1, 9, 1, 7, 0, 0, 4, 0, 8, 6, 8, 4, 1, 6, 0, 5, 3, 7, 1, 4, 8, 5, 5, 9, 2, 6, 4, 9, 3, 1, 7, 2, 0, 0, 3, 5, 1, 7, 0, 4, 6, 5, 6, 9, 5, 4, 3, 4, 6, 8, 4, 7, 5
Offset: 0

Views

Author

Stanislav Sykora, Jan 28 2014

Keywords

Comments

Also the vertex solid angle of a regular tetrahedron.

Examples

			0.55128559843253080794214415146445924293385062869017869619170040868416...
		

Crossrefs

Cf. A236556. Icosidodecahedron: A319881, A319883. Vertex Angles: A019669, A236557, A236558.

Programs

Formula

arccos(23/27).
3*arcsin(2*sqrt(2)/3) - Pi. - Bradley Klee, Oct 04 2018
8*A236555 + 6*A236556 = 4*Pi. - Bradley Klee, Oct 04 2018
Equals 2*arctan(sqrt(2)/5). - R. J. Mathar, Mar 11 2025

Extensions

Definition corrected by Bradley Klee, Oct 04 2018

A244978 Decimal expansion of Pi/32.

Original entry on oeis.org

0, 9, 8, 1, 7, 4, 7, 7, 0, 4, 2, 4, 6, 8, 1, 0, 3, 8, 7, 0, 1, 9, 5, 7, 6, 0, 5, 7, 2, 7, 4, 8, 4, 4, 6, 5, 1, 3, 1, 1, 6, 1, 5, 4, 3, 7, 3, 0, 4, 7, 2, 0, 5, 6, 9, 0, 5, 4, 6, 7, 0, 1, 8, 5, 0, 9, 6, 1, 9, 2, 6, 2, 6, 9, 6, 4, 4, 4, 0, 3, 1, 2, 0, 7, 1, 2, 6, 0, 8, 8, 2, 9, 1, 9, 4, 1, 1, 5, 8, 3, 7, 4, 4, 4, 2, 1
Offset: 0

Views

Author

Jean-François Alcover, Jul 09 2014

Keywords

Examples

			0.0981747704246810387019576057274844651311615437304720569054670185096...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.

Crossrefs

Programs

Formula

Equals Integral_{x = 0..1} x^2/(1 + x^2)^3 dx.
Also equals beta(3/2, 1/2)/16, where 'beta' is Euler's beta function.
From Peter Bala, Oct 27 2019: (Start)
Equals Integral_{x = 0..1} x^4*sqrt(1 - x^2) dx = Integral_{x = 0..1} x^5*sqrt(1 - x^4) dx = Integral_{x = 0..1} x^7*sqrt(1 - x^16) dx.
Equals Integral_{x >= 0} x^4/(1 + x^2)^4 dx. (End)
From Amiram Eldar, Jul 13 2020: (Start)
Equals Integral_{x=0..oo} dx/(x^2 + 4)^2.
Equals Sum_{k>=1} sin(k)^3*cos(k)^3/k. (End)
From Peter Bala, Dec 08 2021: (Start)
Pi/32 = Sum_{n >= 1} (-1)^n*n^2/((4*n^2 - 1)*(4*n^2 - 9)).
Applying Euler's series transformation to this alternating sum gives
Pi/32 = Sum_{n >= 1} 2^(n-3)*n*(n+1)/((2*n+3)*binomial(2*n+2, n+1)). (End)

A035184 a(n) = Sum_{d|n} Kronecker(-1, d).

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 0, 4, 1, 4, 0, 0, 2, 0, 0, 5, 2, 2, 0, 6, 0, 0, 0, 0, 3, 4, 0, 0, 2, 0, 0, 6, 0, 4, 0, 3, 2, 0, 0, 8, 2, 0, 0, 0, 2, 0, 0, 0, 1, 6, 0, 6, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 7, 4, 0, 0, 6, 0, 0, 0, 4, 2, 4, 0, 0, 0, 0, 0, 10, 1, 4, 0, 0, 4, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 9, 2, 0, 0, 8, 0
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + 2*x^2 + 3*x^4 + 2*x^5 + 4*x^8 + x^9 + 4*x^10 + 2*x^13 + 5*x^16 + 2*x^17 + ...
		

Crossrefs

Inverse Moebius transform of A034947.
Sum_{d|n} Kronecker(k, d): A035143..A035181 (k=-47..-9, skipping numbers that are not cubefree), A035182 (k=-7), A192013 (k=-6), A035183 (k=-5), A002654 (k=-4), A002324 (k=-3), A002325 (k=-2), this sequence (k=-1), A000012 (k=0), A000005 (k=1), A035185 (k=2), A035186 (k=3), A001227 (k=4), A035187..A035229 (k=5..47, skipping numbers that are not cubefree).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[-1, #] &]; Array[a, 105] (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1/((1 - X) * (1 - kronecker( -1, p) * X))) [n])}; /* Michael Somos, Jan 05 2012 */
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -1, d)))}; /* Michael Somos, Jan 05 2012 */

Formula

a(n) is multiplicative with a(2^e) = e + 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4). - Michael Somos, Jan 05 2012
a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0. a(4*n + 1) = A008441(n). a(8*n + 1) = A113407(n). a(8*n + 5) = 2 * A053692(n). a(12*n + 1) = A002175(n). a(12*n + 5) = 2 * A121444(n).
Dirichlet g.f.: zeta(s)*beta(s)/(1 - 2^(-s)), where beta is the Dirichlet beta function. - Ralf Stephan, Mar 27 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 = 1.570796... (A019669). - Amiram Eldar, Oct 17 2022

A036793 Decimal expansion of (2/Pi)*Integral_{x=0..Pi} sin(x)/x dx.

Original entry on oeis.org

1, 1, 7, 8, 9, 7, 9, 7, 4, 4, 4, 7, 2, 1, 6, 7, 2, 7, 0, 2, 3, 2, 0, 2, 8, 8, 4, 5, 8, 2, 4, 9, 0, 9, 7, 4, 1, 4, 6, 3, 8, 9, 7, 4, 2, 0, 9, 6, 4, 3, 6, 6, 1, 4, 6, 8, 3, 4, 5, 0, 3, 7, 0, 5, 7, 6, 8, 3, 0, 3, 7, 0, 3, 7, 0, 5, 0, 4, 3, 8, 5, 9, 0, 7, 7, 6, 6, 8, 3, 4, 7, 9, 4, 9, 4, 1, 0
Offset: 1

Views

Author

Keywords

Comments

Integral(sin(x)/x dx) = x - x^3/(3*3!) + x^5/(5*5!) - x^7/(7*7!) + ... . - Harry J. Smith, Apr 28 2009

Examples

			1.17897974447216727..., the constant in Gibbs phenomenon.
		

References

  • E. J. Borowski and J. M. Borwein, Dictionary of Mathematics, 3rd printing, Harper Collins, 1991, Gibbs phenomenon.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.1 Gibbs-Wilbraham Constant, p. 249.

Crossrefs

Cf. A036791 (continued fraction), A061079 for Si( x ).

Programs

  • Mathematica
    RealDigits[ N[ (2/Pi)*SinIntegral[Pi], 105]][[1]] (* Jean-François Alcover, Nov 07 2012 *)
  • PARI
    { default(realprecision, 20080); y=0; x=Pi; m=x; x2=x*x; n=1; nf=1; s=1; while (x!=y, y=x; n++; nf*=n; n++; nf*=n; m*=x2; s=-s; x+=s*m/(n*nf)); x*=2/Pi; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b036793.txt", n, " ", d)); } \\ Harry J. Smith, Apr 28 2009

Formula

A036792 divided by A019669. - R. J. Mathar, Mar 22 2011

A236556 Decimal expansion of the steradian solid angle subtended by one square facet of the cuboctahedron.

Original entry on oeis.org

1, 3, 5, 9, 3, 4, 7, 6, 3, 7, 8, 1, 6, 4, 8, 7, 7, 4, 8, 3, 8, 5, 5, 7, 0, 0, 5, 3, 5, 6, 7, 0, 5, 6, 2, 6, 5, 5, 5, 2, 9, 7, 8, 7, 6, 1, 3, 2, 9, 8, 3, 2, 2, 8, 5, 7, 2, 7, 6, 9, 5, 8, 4, 9, 9, 5, 9, 6, 6, 3, 5, 5, 4, 6, 5, 9, 3, 9, 3, 6, 4, 5, 8, 4, 3, 0, 6, 3, 1, 7, 0, 0, 0, 0, 7, 9, 0, 4, 5, 1, 4, 0, 8, 5, 1
Offset: 1

Views

Author

Stanislav Sykora, Jan 28 2014

Keywords

Comments

Also the vertex solid angle of a regular octahedron.

Examples

			1.35934763781648774838557005356705626555297876132983228572769584995966...
		

Crossrefs

Cf. A188615, A236555. Icosidodecahedron: A319881, A319883. Vertex Angles: A019669, A236557, A236558.

Programs

  • Maple
    evalf(4*arcsin(1/3),100) ; # R. J. Mathar, Apr 26 2021
  • Mathematica
    RealDigits[4*ArcSin[1/3], 10, 120][[1]] (* Amiram Eldar, May 22 2023 *)
  • PARI
    4*asin(1/3)

Formula

Equals 4*arcsin(1/3) = 4*A188615.
Equals 2*Pi - 4*arcsin(2*sqrt(2)/3). - Bradley Klee, Oct 04 2018
8*A236555 + 6*this = 4*Pi. - Bradley Klee, Oct 04 2018

Extensions

Definition corrected by Bradley Klee, Oct 04 2018

A094888 Decimal expansion of 2*Pi*phi, where phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 0, 1, 6, 6, 4, 0, 7, 3, 8, 4, 6, 3, 0, 5, 1, 9, 6, 3, 1, 6, 1, 9, 0, 1, 8, 0, 2, 6, 4, 8, 4, 3, 9, 7, 6, 8, 3, 6, 6, 3, 6, 7, 8, 5, 8, 6, 4, 4, 2, 3, 0, 8, 2, 4, 0, 9, 6, 4, 6, 6, 5, 6, 1, 8, 4, 9, 9, 9, 5, 8, 2, 8, 6, 9, 0, 5, 3, 9, 7, 2, 0, 3, 7, 3, 2, 1, 7, 7, 2, 4, 0, 7, 0, 7, 8, 8, 4, 3
Offset: 2

Views

Author

N. J. A. Sloane, Jun 15 2004

Keywords

Examples

			10.16640738463051963161901802648439768366367858644230824...
		

Crossrefs

Integral_{x>=0} 1/(1+x^m) dx: A019669 (m=2), A248897 (m=3), A093954 (m=4), A352324 (m=5), A019670 (m=6), A352125 (m=8), this sequence (m=10).

Programs

  • Maple
    evalf(Pi*(1+sqrt(5)), 121);  # Alois P. Heinz, May 16 2022
  • Mathematica
    RealDigits[2 * Pi * GoldenRatio, 10, 100][[1]] (* Amiram Eldar, May 18 2021 *)

Formula

From Peter Bala, Nov 03 2019: (Start)
Equals 10*Integral_{x >= 0} cosh(4*x)/cosh(5*x) dx = Integral_{x = 0..1} (1 + x^8)/(1 + x^10) dx .
Equals 100*Sum_{n >= 0} (-1)^n*(2*n + 1)/( (10*n + 1)*(10*n + 9) ). (End)
Equals 10 * Product_{k>=2} 2/sqrt(2 + sqrt(2 + ... sqrt(2 + phi)...)), with k nested radicals (Baez, 2017). - Amiram Eldar, May 18 2021
Equals Integral_{x>=0} 1/(1 + x^10) dx = (Pi/10) * csc(Pi/10). - Bernard Schott, May 15 2022
Equals Gamma(1/10)*Gamma(9/10). - Andrea Pinos, Jul 03 2023
Equals 10 * Product_{k >= 1} (10*k)^2/((10*k)^2 - 1). - Antonio Graciá Llorente, Mar 15 2024
Equals 10 * Product_{k>=2} (1 + (-1)^k/A090771(k)). - Amiram Eldar, Nov 23 2024
Equals 2*A094886 = 10*A135155/e. - Hugo Pfoertner, Nov 23 2024
Previous Showing 31-40 of 110 results. Next